Facile and Efficient Anti-Fouling Surface Construction on Poly(dimethylsiloxane) via Mussel-Inspired Chemistry

Article Preview

Abstract:

Poly (dimethylsiloxane) (PDMS) silicones have found many applications in biomedical devices, such as catheters and intraocular lenses. But their hydrophobicity makes the possibility of the unexpected bioadhesion. In this paper, we reported a facile and efficient anti-fouling surface modification method on PDMS via self-polymerization of dopamine and the followed hyaluronic acid immobilization. Dopamine, commonly used as a neurotransmitter, is also a small molecule mimic of the adhesive proteins of mussels. Self-polymerization of dopamine can produce a thin polydopamine (PDA) layer on PDMS surface. Subsequently, thiol group functionalized hyaluronic acid (denoted as HA-SH) was immobilized covalently onto the resultant surface by the coupling between thiol group and reactive polydopamine layer. Then, the in vitro adhesion behaviors of the lens epithelial cells (LECs) and macrophage were investigated for evalution the anti-fouling effect of the hyaluronic acid modified PDMS surface. The results indicated that the cellular adhesion on PDMS were greatly decreased after hyaluronic acid modification, which suggested the potential application of such hyaluronic acid modified PDMS in biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

344-349

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.R. Sastri, in Plastics in medical Devices: Properties, Requirements and Applications, William Andrew Publising, Norwich, NY (2009).

Google Scholar

[2] D.G. Castner, B.D. Ratner, Surf. Sci. Vol. 500 (2002), p.28.

Google Scholar

[3] K. Efimenko, W.E. Wallaceb, J. Genzera, J. Colloid Interface Sci. Vol. 254 (2002), p.306.

Google Scholar

[4] S. Lee, J. Voros, Langmuir Vol. 21 (2005), 11957.

Google Scholar

[5] J.S. Mohammed, M.M. DeCoster, M.J. McShane, Biomacromolecules Vol. 5 (2004), p.1745.

Google Scholar

[6] T. Goda, R. Matsuno, T. Konno, M. Takai, K. Ishihara, Colloid. Surf. B Vol. 63 (2008), p.64.

Google Scholar

[7] H. Chen, Z. Zhang, Y. Chen, M.A. Brook, H. Sheardown, Biomaterials Vol. 26 (2005), p.2391.

Google Scholar

[8] W. Mussard, N. Kebir, I. Kregel, M. Esteve, V. Semetey, Angew. Chem. Int. Ed. Vol. 50 (2011), p.10871.

Google Scholar

[9] H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith. Science Vol. 318 (2007). P. 426.

Google Scholar

[10] Z.Y. Xi, Y.Y. Xu, L.P. Zhu, Y. Wang, B.K. Zhu, J. Membrane Sci. Vol. 327 (2009), p.244.

Google Scholar

[11] S. H Ku, J. Ryu, S.K. Hong, H Lee, C.B. Park, Biomterials Vol. 31 (2010), p.2535.

Google Scholar

[12] W. B Tsai, C.Y. Chien, H. Thissen, J.Y. Lai, Acta Biomater. Vol. 7 (2011), p.2518.

Google Scholar

[13] H. Lee, N.F. Scherer, P.B. Messersmith, Proc. Nat. Acad. Sci. USA Vol. 103(2006), p.12999.

Google Scholar

[14] T.C. Laurent, J.R.E. Fraser, Hyaluronan Vol. 6 (1992), p.2397.

Google Scholar

[15] T. Nishida, M. Nakamura, H. Mishima, T. Otori, Exp. Eye Res. Vol. 53 (1991), p.753.

Google Scholar

[16] M.E. Johnson, P.J. Murphy, M. Boulton, Arch. Clin. Exp. Ophthalmol. Vol. 244 (2006), p.109.

Google Scholar

[17] S. Suri, R, Banerjee, J. Biomed. Mater. Res. A Vol. 79 (2006), p.650.

Google Scholar

[18] Q.K. Lin, K.F. Ren, J. Ji, Colloid Surf. B Vol. 74 (2009), p.298.

Google Scholar

[19] R.A. D'Sa, P.J. Dickinson, J. Raj, B.K. Pierscionek, B.J. Meenan, Soft Matter Vol. 7 (2011), p.608.

Google Scholar

[20] W.G. Pitt, R.N. Morris, M.L. Mason, M.W. Hall, Y. Luo, J, G.D. Prestwich, J. Biomed. Mater. Res. A Vol. 68 (2004), p.95.

Google Scholar

[21] R. Jin, L.S.M. Teixeira, A. Krouwels, P.J. Dijkstra, C.A. van Blitterswijk, M. Karperien, J. Feijen, Acta Biomater. Vol. 6 (2010), p. (1968).

DOI: 10.1016/j.actbio.2009.12.024

Google Scholar