Methods of Porous Biomedical Material Fabrication

Article Preview

Abstract:

The development history of biomedical titanium alloy was reviewed in this paper. Because of high recovery strain, low stiffness facilitating integration with bone structures and good market potential of porous biomedical material, the most common methods for fabricating porous biomedical material were introduced. The advantages and disadvantages of the methods were summarized from the aspects of process route, reaction mechanism and porosity. The main direction for further studies in this field was also suggested.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1468-1471

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Karageorgiou and D. Kaplan: Biomaterials Vol. 26 (2005), p.5474.

Google Scholar

[2] M. Niinomi: Metall. Mater. Trans. A Vol. 33A (2002), p.477.

Google Scholar

[3] M. Niinomi: Mater. Sci. Eng. A Vol. 243 (1998), p.231.

Google Scholar

[4] M. Niinomi, M. Nakai and J. Hieda: Acta Biomaterialia Vol. 8 (2012), p.3888.

Google Scholar

[5] R. T. Bothe, K. E. Beaton and H. A. Davenport: Surg. Gynecol. Obstet. Vol. 71 (1940), p.598.

Google Scholar

[6] C. B. Tang, D. X. Liu, Z. Wang and Y. Gao: Appl. Surf. Sci. Vol. 257 (2011), p.6364.

Google Scholar

[7] E. Kobayashi, S. Matsumoto, H. Doi, T. Yoneyama and H. Hamanaka: J. Biomed. Mater. Res. Vol. 29 (1995), p.943.

Google Scholar

[8] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mater. Sci. Eng., A Vol. 243 (1998) p.244.

Google Scholar

[9] S.J. Lia, M. Niinomi, T. Akahori, T. Kasuga, R. Yang and Y.L. Hao: Biomaterials Vol. 25 (2004) p.3369.

Google Scholar

[10] R. Van Noort: J. Mater. Sci. Vol. 22(1987), p.3801.

Google Scholar

[11] S. Kujala, J. Ryhanen, A. Danilov and J. Tuukkanen: Biomaterials Vol. 24(2003), p.4691.

Google Scholar

[12] G. Ryan, A. Pandit, D. P. Apatsidis: Biomaterials Vol. 27 (2006), p.2651.

Google Scholar

[13] M. H. Elahinia, M. Hashemi, M. Tabesh and S. B. Bhaduri: Prog. Mater Sci. Vol. 57 (2012), p.911.

Google Scholar

[14] B. Y. Li, L. J. Rong and Y. Y Li: J. Mater. Res. Vol. 13(1998), p.2847.

Google Scholar

[15] G. Tosun, L. Ozler, M. Kaya and N. Orhan : J. Alloys Compd. Vol. 487 (2009), p.605.

Google Scholar

[16] M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer and D. Stöver: Mater. Sci. Eng., A Vol. 337 (2002), p.254.

DOI: 10.1016/s0921-5093(02)00028-x

Google Scholar

[17] R. Nicula, F. Lüthen, M. Stir, B. Nebe and E. Burkel : Biomol. Eng. Vol. 24 (2007), p.564.

Google Scholar

[18] L. J. Chen, T. Li, Y. M. Li, H. He and Y. H. Hu: Transactions of Nonferrous Metals Society of China Vol. 19 (2009), p.1174.

Google Scholar

[19] S.K. Sadrnezhaad and S.A. Hosseini: Mater. Des. Vol. 30 (2009), p.4483.

Google Scholar

[20] B. Li, L. Ronga, Y. Lia and V. E. Gjunterb: Intermetallics Vol. 8 (2000), p.881.

Google Scholar

[21] A. Ibrahim, F. Zhang, E. Otterstein, E. Burkel: Mater. Des. Vol. 32 (2011), p.146.

Google Scholar

[22] B. Yuana, C.Y. Chung and M. Zhu: Mater. Sci. Eng., A Vol. 382 (2004), p.181.

Google Scholar

[23] E. Aust, W. Limberg, R. Gerling, B. Oger and T. Ebel: Adv. Eng. Mater. Vol. 8 (2006), p.365.

Google Scholar

[24] T. Billiet, M. Vandenhaute, J. Schelfhout, S. V. Vlierberghe and P. Dubruel : Biomaterials Vol. 33 (2012), p.6020.

DOI: 10.1016/j.biomaterials.2012.04.050

Google Scholar

[25] D.W. Hutmacher: J. Biomater. Sci. Polym. Edn. Vol. 12 (2001), p.107.

Google Scholar

[26] C. Liu, Z. Xia and J. T. Czernuszka: Trans IChemE, Part A, Chem. Eng. Res. Des. Vol. 85(A7) (2007), p.1051.

Google Scholar

[27] M. M. Dewidar anf J. K. Lim: J. Alloys Compd. Vol. 454 (2008), p.442.

Google Scholar