TiO2 Nanotube Film as the Support of Platinum Electro-Catalyst with Enhanced Electrochemical Activity for Methanol Oxidation

Article Preview

Abstract:

A facile method to prepare well-dispersed Platinum nanoparticles (Pt NPs) on FTO and TiO2 nanotube (TNTs) film was reported. The so-prepared Pt/FTO and Pt/TNT film electrodes are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD). The results show Pt NPs have been dispersed on the supporting matrixs uniformly. Electrochemical investigations indicate that Pt/TNT has higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than Pt/FTO, which can be ascribed to the high dispersion of Pt NPs on the TiO2 nanotubes surface. The present method is promising for the design of high performance catalysts for direct methanol fuel cells.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1696-1699

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. R. Shen, M. Yamada and M. Miyake: Chem. Commun. (2007), p.245.

Google Scholar

[2] J. K. Oh, Y. W. Lee, S. B. Han, A. R. Ko, D. Y. Kim, H. S. Kim, S. J. Kim, B. Roh, I. Hwang and K. W. Park: Catal. Sci. Technol. Vol. 1 (2011), p.394.

Google Scholar

[3] S. Yao, L. Feng, X. Zhao, C. Liu and W. Xing: J. Power Sources Vol. 217 (2012), p.280.

Google Scholar

[4] J. L. Figueiredo, M. F. R. Pereira, P. Serp, P. Kalck, P. V. Samant and J. B. Fernandes, Carbon Vol. 44 (2006), p.2516.

Google Scholar

[5] Y. J. Ko, H. S. Oh and H. Kim: J. Power Sources Vol. 195 (2010), p.2623.

Google Scholar

[6] L. Yang, Y. Xiao, G. Zeng, S. Luo, S. Kuang, and Q. Cai: Energy Fuels Vol. 23 (2009) p.3134.

Google Scholar

[7] Q. Y. Cai, M. Paulose, O. K. Varghese and C. A. Grimes: J. Mater. Res. Vol. 20 (2005) p.230.

Google Scholar

[8] M. Paulose, O. K. Varghese, L. Peng, K. C. Popat, H. E. Prakasam, G. K. Mor, T. A. Desai and C. A. Grimes: J. Phys. Chem. C Vol. 111 (2007), p.14992.

DOI: 10.1021/jp075258r

Google Scholar

[9] S. V. Kraemer, K. Wikander, G. Lindbergh, A. Lundblad and A. E. C. Palmqvist: J. Power Sources Vol. 180 (2008), p.185.

Google Scholar

[10] E. Auer, A. Freund and T. Lehmann, U. S. Patent, 6, 007, 934. (1999).

Google Scholar

[11] M. L. Anderson, R. M. Stroud and D. R. Rolison: Nano Letters Vol. 2 (2002), p.235.

Google Scholar

[12] L. Dubau, F. Hahn, C. Coutanceau, J. M. Leger and C. Lamy: J. Electreanal. Chem. Vol. 407-415 (2003), p.554.

Google Scholar

[13] Y. Y. Chu, Z. B. Wang, D. M. Gu, G. E. Yin: J. Power Sources Vol. 195 (2010), p. l799.

Google Scholar

[14] X. Wang, W. H. Gu, L. D. Lu, X. J. Yang, W. S. Hua and Q. Z. Song: Thermochim. Acta Vol. 157 (1990), p.321.

Google Scholar

[15] G. Foti, C. Mousty, K. Novy, C. Comninellis and V. Reid: J. Appl. Electrochem. Vol. 30 (2000), p.147.

Google Scholar

[16] L. A. da Silva, V. A. Alves, S. C. de Castro and J. F. C. Boodts: Colloid. Surface. A Vol. 170 (2000), p.119.

Google Scholar

[17] H. Y. Eileen and S. Keith: Electrochem. Commun. Vol. 6 (2004), p.361.

Google Scholar

[18] J. Schmidt, H. A. Gasteiger, G. D. Stab, P. M. Urban, D. M. Kolb and R. J. Behm: J. Electrochem. Soc. Vol. 145 (1998), p.2354.

Google Scholar