Impacts of N2 Import into Reaction System on the Structures and Properties of the Graphite-Amorphous Carbon Films

Article Preview

Abstract:

Graphite-amorphous carbon films were grown by sputtered Ni target in Ar/CH4 mixture atmosphere. The impacts of N2 import into reaction system on the structures and properties of the graphite-amorphous carbon films were studied. The results shown that graphite-amorphous carbon films with good hardness, elastic and friction coefficient were obtained at the N2/CH4 flow ratio below 20/80. Beyond the flow ratio of 20/80, the number and size of nanocrystal graphite decrease induce the bad hardness, elastic and friction coefficient of the graphite-amorphous films. Graphite-amorphous carbon films properties were possible correlate with the size and number of nanocrytal graphite and its crosslinking degree to carbon network, especially the former.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1924-1929

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Hu, G. Chen, J. Zhang, Facile, Surf. Coat. Technol. Vol. 202 (2008) pp.5943-5946.

Google Scholar

[2] H. Hu, G. Chen, J. Zhang, Carbon Vol. 46 (2008) pp.1095-1097.

Google Scholar

[3] J. Zhang, Y. Yu, D. Huang, Solid State Sci. Vol. 12 (2010) pp.1183-1187.

Google Scholar

[4] Q. Wang, C. Wang, Z. Wang, J. Zhang, D. He, Appl. Phys. Lett. Vol. 91 (2007) p.141902.

Google Scholar

[5] C. Wang, S. Yang, Q. Wang, Z. Wang, J. Zhang, Vol. 19 (2008) p.225709.

Google Scholar

[6] S. Marchini, S. Günther, J. Wintterlin, Phys. Rev. B Vol. 76 (2007) p.075429.

Google Scholar

[7] S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science Vol. 283(5401) (1999) pp.512-514.

DOI: 10.1126/science.283.5401.512

Google Scholar

[8] W.T. Zheng, H. Sjöström, I. Ivanov, K.Z. Xing, E. Broitman, W.R. Salaneck, et al. J. Vac. Sci. Technol. A Vol. 14(5) (1996) pp.2696-2701.

Google Scholar

[9] J. Zhang, B. Zhang, Q. Wang and Z. Wang, Diamond Relat. Mater. Vol. 23 (2010) pp.5-9.

Google Scholar

[10] M. A. Tamor and W. C. Vassal, J. Appl. Phys. Vol. 76 (1994) p.3823.

Google Scholar

[11] T. Livneh, T.L. Haslett, M. Moskovits, Phys. Rev. B Vol. 66 (2002) p.195110.

Google Scholar

[12] J.O. Orwa, K.W. Nugent, D.N. Jamieson, S. Prawer, Phys. Rev. B Vol. 62 (2000) p.5461.

Google Scholar

[13] A.C. Ferrari, J. Robertson, Phys. Rev. B Vol. 61 (2000) p.14096.

Google Scholar

[14] A.C. Ferrari, J. Robertson, Philos. Trans. R. Soc. Lond. A Vol. 362 (2004) p.2477.

Google Scholar

[15] A.C. Ferrari, Diamond Relat. Mater. Vol. 11 (2002) p.1053.

Google Scholar