Fabrication of Magnetic Cenosphere Deposited with Fe3O4 Nanoparticles by Hydrothermal Method

Article Preview

Abstract:

We prepared the magnetic cenospheres deposited with magnetite Fe3O4 nanoparticles under hydrothermal conditions. The crystalline phase, magnetization properties, morphology, chemical composition and thermal stability of asobtained cenospheres are analyzed by Xray diffraction, vibrating sample magnetometer, scanning electron microscope, Xray energy dispersive spectroscope, transmission electron microscope, thermal gravimetric analysis and differential scanning calorimetry techniques. The results show that the inverse cubic spinel phase of Fe3O4 nanoparticles with an average size 50 nm are synthesized, and synchronously deposited on cenosphere surface. As the thickness of Fe3O4 coating increases, the saturation magnetization increases to some extent. The growth of Fe3O4 nanoparticles can be controlled by adding ethanol to the reaction solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

2021-2025

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.Q. Tao, J.F. Yao, L.X. Zhang and N. P Xu: Mater. Lett. Vol. 63 (2009), p.203.

Google Scholar

[2] X. Li, Y.X. Duan, Y. Zhao and L. Zhu: Prog. Nat. Sci. Vol. 21 (2011), p.392.

Google Scholar

[3] X.F. Meng, D.H. Li, X.Q. Shen and W. Liu: Appl. Surf. Sci. Vol. 256 (2010), p.3753.

Google Scholar

[4] D.H. Li, J.X. Zhou, X.Q. Shen and W. Liu: Particuology. Vol. 8 (2010), p.257.

Google Scholar

[5] X.F. Meng, X.Q. Shen and W. Liu: Appl. Surf. Sci. Vol. 258 (2012), p.2627.

Google Scholar

[6] X.F. Meng and X.Q. Shen: Particuology. Vol. 10 (2012), p.334.

Google Scholar

[7] X.C. Wei and R.C. Viadero Jr: Colloid. Surface. A. Vol. 294 (2007), p.280.

Google Scholar

[8] D.L. Zhao, X.X. Wang, X.W. Zeng, Q.S. Xia and J.T. Tang: J. Alloy. Compd. Vol. 477 (2009), p.739.

Google Scholar

[9] A.R. Mahdavian and M.A. Mirrahimi: Chem. Eng. J. Vol. 159 (2010), p.264.

Google Scholar

[10] A.M. Tang, H.W. Zhang, G. Chen and Y.Y. Liu: T. China. Pulp. Pap. Vol. 21 (2006), p.66.

Google Scholar

[11] R.Y. Hong, S.Z. Zhang, Y.P. Han, H.Z. Li, J. Ding and Y. Zheng: Powder. Technol. Vol. 170 (2006), p.1.

Google Scholar

[12] J. Vidal–Vidal, J. Rivas and M.A. Lopez–Quintela: Colloid. Surface. A. Vol. 288 (2006), p.44.

Google Scholar

[13] L.Y. Chen, Z.X. Xu, H. Dai and S.T. Zhang: J. Alloy. Compd. Vol. 497 (2010), p.221.

Google Scholar

[14] D.L. Zhao, P. Teng, Y. Xu, Q.S. Xia and J.T. Tang: J. Alloy. Compd. Vol. 502 (2010), p.392.

Google Scholar

[15] S. Utech, C. Scherer, K. Krohne, L. Carrella, E. Rentschler, T. Gasi, V. Ksenofontov, C. Felser and M. Maskos: J. Magn. Magn. Mater. Vol. 322 (2010), p.3519.

DOI: 10.1016/j.jmmm.2010.06.056

Google Scholar

[16] N. Mizutani, T. Iwasaki, S. Watano, T. Yanagida and T. Kawai: Curr. Appl. Phys. Vol. 10 (2010), p.801.

Google Scholar

[17] P. Dutta, S. Pal, M.S. Seehra, N. Shah and G.P. Huffman: J. Appl. Phys. Vol. 105 (2009), p. 07B501.

Google Scholar