A Review of Nanostructured TiO2 Application in Li-Ion Batteries

Article Preview

Abstract:

TiO2 has large potential ability in Lithium-ion batteries due to its high energy density and safety. The main reasons that limit the performance of TiO2 electrode is its low real capacity which caused by poor conductivity and other factors. Varying bulk TiO2 materials to nanoscale is believed a promising method as it could increase Li insertion sites, short the ions diffusion distance and enhance the kinetics. In addition, doping heterogeneous elements or compositing other conductivity materials could enable TiO2 to improve electron transfer ability. In this paper, we reviewed the electrochemical performance of some nanostructured TiO2 and analyzed the merits and weaknesses. Some challenges and perspectives for future research were also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

301-306

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Atmand and J. -M. Tarascon: Nature Vol. 451 (2008), p.652.

Google Scholar

[2] Bruno Scrosati: Nature nanotechnology Vol. 2 (2007), p.598.

Google Scholar

[3] J. -M. Tarascon & M. Atmand: Nature Vol. 414 (2011), p.359.

Google Scholar

[4] Antonino Slavatore Aricò et, al: Nature Materials Vol. 4 (2005), p.366.

Google Scholar

[5] Brian L. Ellis, Kyu Tae Lee and Linda F. Nazar: Chem. Mater. Vol. 22 (2010), p.691.

Google Scholar

[6] Ying Wang and Guozhong Cao: Adv. Mater Vol. 20 (2008), p.2251.

Google Scholar

[7] Zhang Jianbo, Lian fan, et, al.: SCIENTIA SINICA Chimica Vol. 8 (2008), p.1252.

Google Scholar

[8] P. Poizot, S. Laruelle, et, al.: Nature Vol. 407 (2000), p.496.

Google Scholar

[9] Kai Zhu, Nathan R. Neale, et, al.: Nano Lett Vol. 1 No. 7(2007), p.69.

Google Scholar

[10] Bitao Liu, Yongji Huang, et, al.: J. Mater. Chem. Vol. 22 (2012), p.7484.

Google Scholar

[11] Shahed U. M. Khan, et, al: Science Vol. 297 (2002), p.2243.

Google Scholar

[12] Qian Li, Kui Cheng, et, al: J. Mater. Chem. Vol. 22 (2012), p.9019.

Google Scholar

[13] Yu-Guo Guo, Jin-Song Hu, and Li-Jun Wan: Adv. Mater. Vol. 20 (2008), p.2878.

Google Scholar

[14] Kyu Tae Lee, Jaephil Cho: Nano Today Vol. 6 (2011), p.28.

Google Scholar

[15] René Marchend, Luc Brohan and Michel Tournoux: Mate. Res. Bull. Vol. 15 (1980), p.1129.

Google Scholar

[16] Chen Shanshan, Zhu Yinhua, et, al.: Chinese Journal of Catalysis Vol. 6 (2010), p.605.

Google Scholar

[17] V. Subramanian, A. Karki et, al.: Journal of Power Source Vol. 159 (2006), p.186.

Google Scholar

[18] P. Kubiak, M. Pfanzelt et, al.: Journal of Power Source Vol. 194 (2009), p.1099.

Google Scholar

[19] Du-Hee Lee, Jae-Gwan Park et, al.: Eur.J. Inorg. Chem. (2008), p.878.

Google Scholar

[20] Yu Ren, Zheng Liu et, al.: Angew. Chem. Int. Ed. Vol. 51 (2012), p.2164.

Google Scholar

[21] Jun Song Chen, Yi Ling Tan et, al.: J. Am. Chem. Soc. Vol. 17 (2010), p.2164.

Google Scholar

[22] Na Li, Gang Liu et, al.: Adv. Funct. Mater. Vol. 21 (2011), p.1717.

Google Scholar

[23] C.A. Grimes, G. k. Mor.: TiO2 Nanotube Arrays Synthesis, Properties and Applications (Springer, Germany 2009).

Google Scholar

[24] Jianfeng Ye, Wen Liu et, al.: J. Am. Chem. Soc. Vol. 4 (2011), p.933.

Google Scholar

[25] Ming-Che Yang, Yang-Yao Lee et, al.: Journal of Power Sources Vol. 207 (2012), p.166.

Google Scholar

[26] Hui Qiao, Yawen Wang et, al.: Electrochemistry Communications Vol. 10 (2008), p.1280.

Google Scholar

[27] Shanmu Dong, Haibo Wang et, al.: Thin Solid Films Vol. 519 (2011), p.5978.

Google Scholar

[28] Tang Yiping, Tan Xiaoxu et, al.: Electrochimica Acta Vol. 78 (2012), p.154.

Google Scholar

[29] Wei Wang, Miao Tian et, al.: Nano Lett. Vol. 12 (2012), p.655.

Google Scholar

[30] Dawei Gong, Craig A. Grimes and OommanK. Varghese.: J. Mater. Res. Vol. 12 (2001), p.3331.

Google Scholar

[31] Hiraoki Imai, Yuko Takei et, al.: J. Mater. Chem. Vol. 9 (1999), p.2971.

Google Scholar

[32] Jiayan Yan, Huaihe Song et, al.: Materials Chemistry and Physics Vol. 118 (2009), p.367.

Google Scholar

[33] V. Zwilling, M. Aucouturier, E. Darque-Ceretti.: Electrochimica Acta Vol. 45 (1999), p.921.

DOI: 10.1016/s0013-4686(99)00283-2

Google Scholar

[34] J.M. Macak, H. Tsuchiya, P. Schmuki.: Angew. Chem. Int. Ed. Vol. 44 (2005), p.2100.

Google Scholar

[35] G.K. Mor, O.K. Varghese et, al.: Solar Energy Materials & Solar Cells Vol. 90 (2006), p. (2011).

Google Scholar

[36] Sergio Brutti, Valentina Gentili et, al: Adv. Energy Mater. Vol. 2 (2012), p.322.

Google Scholar

[37] Jinwei Xu, Caihong Jia et, al.: Electrochimica Acta. Vol. 52 (2007), p.8044.

Google Scholar

[38] Zhen Wei, Zheng Liu et, al.: J. Solid. State. Electrochem Vol. 14 (2010), p.1045.

Google Scholar

[39] Huaqing Li, S.K. Martha et, al.: Journal of Power Source. Vol. 218 (2012), p.88.

Google Scholar

[40] Gregorio F. Ortiz, Ilie Hanzu et, al.: Chem. Mater. Vol. 21 (2009), p.63.

Google Scholar

[41] Won-Hee Ryu et, al.: Electrochemical Acta Vol. 61 (2012), p.19.

Google Scholar

[42] B.G. Lee, S. -C. Nam, J. Choi.: Current Applied Physics Vol. 12 (2012), p.1580.

Google Scholar

[43] Zhonghe Bi, M.P. Paranthaman et, al.: Journal of Power Sources Vol. 222 (2013), p.461.

Google Scholar

[44] Hyungkyu Han, Taseup Song et, al.: Acs Nano. Vol. 6 (2012), p.8308.

Google Scholar

[45] Qing Liu Wu, Juchuan Li et, al.: J. Phys. Chem. C Vol. 116 (2012), p.18669.

Google Scholar

[46] Hui Xiong, Handan Yildirim et, al.: J. Phys. Chem. C Vol. 116 (2012), p.3181.

Google Scholar

[47] Kyung Hyun Ko et, al.: Journal of Colloid and Interface Science Vol. 283 (2005), p.482.

Google Scholar

[48] L. Aldon, P. Kubiak et, al.: Chem. Mater. Vol. 18 (2006), p.1401.

Google Scholar

[49] Jinwei Xu et, al.: Journal of Power Source. Vol. 175 (2008), p.903.

Google Scholar

[50] Hun-Gi Jung, Chong Seung Yoon et, al.: J. Phys. Chem. C Vol. 113 (2009), p.21258.

Google Scholar

[51] Yude Wang, Bernd M. Smarsly and Igor Djerdj.: Chem. Mater Vol. 22 (2010), p.6624.

Google Scholar

[52] Yude Wang, Ting Chen and Qiuying Mu: J. Mater. Chem. Vol. 21 (2011), p.6006.

Google Scholar

[53] Zahid Ali, Seung Nam Cha et, al.: J. Mater. Chem Vol. 22 (2012), p.17625.

Google Scholar

[54] C. Lai, X. C. Yuan et, al.: Electrochem. Solid-State Lett. Vol. 5 (2012), p. A65.

Google Scholar

[55] Xian-Ming Liu et, al.: Composite Science and Technology Vol. 72 (2012), p.121.

Google Scholar

[56] K.S. Novoselov, A.K. Geim et, al.: Science Vol. 36 (2004), p.666.

Google Scholar

[57] H. Huang, W.K. Zhang et, al.: Materials Letters Vol. 61 (2007), p.296.

Google Scholar

[58] Songhun Yoon, et, al.: Electrochemical and Solid-State Letters Vol. 2 (2009), p. A28.

Google Scholar

[59] Sang-jun Park, Young-Jun Kim et, al.: Journal of Power Sources Vol. 196 (2011), p.5133.

Google Scholar

[60] Jingwei Zhang, Xiangxia Yan et, al.: Journal of Power Sources Vol. 198 (2012), p.223.

Google Scholar

[61] Isamu Moriguchi, Ryoji Hidaka er, al.: Adv. Mater. Vol. 18 (2006), p.69.

Google Scholar

[62] Baojun Li, Huaqiang Cao et, al.: Inorg. Chem. Vol. 50 (2011), p.1628.

Google Scholar

[63] Xianjun Zhu, Yanwu Zhu et, al.: Acs. Nano. Vol. 4 (2011), p.3333.

Google Scholar

[64] Donghai Wang, Daiwon Choi et, al.: ACS Nano Vol. 4 (2009), p.907.

Google Scholar

[65] Ben-Lin He, Bin Dong, Hu-Lin Li: Electrochemistry Communication Vol. 9 (2007), p.425.

Google Scholar

[66] Fei-Fei Cao, Yu-Guo Guo et, al.: Chem. Mater. Vol. 22 (2010), p. (1908).

Google Scholar

[67] Xiaomeng Wu, Shichao Zhang et, al.: Journal of Material Chemistry Vol. 22 (2012), p.11151.

Google Scholar

[68] Sukeun Yoon, Arumugam Manthiram.: J. Phys. Chem.C. Vol. 115 (2011), p.9410.

Google Scholar

[69] C. Lai, H.Z. Zhang et, al.: Journal of Power Sources Vol. 196 (2011), p.4735.

Google Scholar

[70] Benjamin Hertzberg, Alexander Alexeev and Gleb Yushin: J. Am. Chem. Soc. Vol. 25 (2010), p.8548.

Google Scholar

[71] Chenglong Zhao, Qi Li et, al.: J. Mater. Chem. Vol. 22 (2012), p.12193.

Google Scholar

[72] Ge Chen, Zhenyao Wang et, al.: Chem. Mater. Vol. 20 (2008), p.6951.

Google Scholar

[73] Arava Leela Mohana Reddy et, al.: Nano Letters Vol. 3 (2009), p.1002.

Google Scholar