Progress on Fabrication of Free-Standing and through-Hole TiO2 Nanotube Arrays

Article Preview

Abstract:

TiO2 nanotube arrays have attracted remarkable attention in recent years for diverse applications including water splitting photocatalysis, gas sensors, lithium-ion batteries and dye-sensitized solar cells, etc due to its semiconductor properties ,large surface area and nanotublar structures. Compared with TiO2 nanotube, free-standing and through-hole TiO2 nanotube membranes with optimized microstructure, direct electrons transfer,stability to mechanical vibrations,have a broader applied potential. This report presents several preparation methods of free-standing and through-hole nanotube membranes, and explains the mechanism of detachment process. These methods can be classified into two types: one is an in-situ method and the other is an ex-situ.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

319-322

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.X. Lei, J.Y. Liao, R. Zhang, J. Wang, C.Y. Su, et al: J. Phys. Chem. C Vol. 114 (2010), p.15228.

Google Scholar

[2] D. Fang, K.L. Huang, S.Q. Liu, D.Y. Qin: Electrochemistry Communications Vol. 11 (2009), p.901.

Google Scholar

[3] G.H. Liu, N. Hoivik, K.Y. Wang, H. Jakobse: submitted to 2011 11th IEEE International Conference on Nanotechnology.

Google Scholar

[4] Y. Jo, I. Jung, I. Lee, J. Choi, Y. Tak: Electrochemistry Communications Vol. 12 (2010), p.616.

Google Scholar

[5] S. LI, G. Zhang: submitted to Journal of the Ceramic Society of Japan (2010).

Google Scholar

[6] Z. Zhang, D. Guo, Y. Xing, G. Zhang: Applied Surface Science Vol. 257 (2011), p.4139.

Google Scholar

[7] J. Wang, Z.Q. Lin: Chem. Mater Vol. 20 (2008), p.1257.

Google Scholar

[8] D.A. Wang, L.F. Liu: Chem. Mater Vol. 22 (2010), p.6656.

Google Scholar

[9] J.J. Liao, S.W. L, X.G. Li, S.P. Li, X.K. Gao, Y. Cao: Cryst. Res. Technol Vol. 7 (2012), p.731.

Google Scholar

[10] K. Kant, D. Losic: Phys. Status Solidi RRL Vol. 5 (2009), p.139.

Google Scholar

[11] J. Lin, J.F. Chen, X.F. Chen: Electrochemistry Communications Vol. 12 (2010), p.1062.

Google Scholar

[12] Q.W. Chen, D.S. Xu, Z.Y. Wu, Z.F. Liu: Nanotechnology 19, 365708 (2008).

Google Scholar

[13] G.H. Liu, K.Y. Wang, N. Hoivik, H. Jakobsen: Solar Energy Materials & solar cells Vol. 98(2012), p.24.

Google Scholar

[14] S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki,: Nano Letter Vol. 7(2007), P. 1286.

Google Scholar

[15] C.J. Lin, W.Y. Yu, Y.T. Lu, S.H. Chien: Chemical Communication (2008) 6031-6033.

Google Scholar

[16] J.J. Liao, S.W. Lin, N.Q. Pan, et al: Chemical Engineering Journal Vol. 211-212 (2012), p.343.

Google Scholar

[17] J.J. Liao, S.W. Lin, et al: Materials Characterization Vol. 66 (2012), p.24.

Google Scholar

[18] J. w. Ng, et al: Journal of Chemical Technology & Biotechnology Vol. 85 (2010), p.1061.

Google Scholar

[19] S.P. Albu, A. Ghicov, S. Berger, H. Jha, P. Schmuki: Electrochemistry Communication Vol. 12 (2010), P. 1352.

Google Scholar

[20] Q.W. Chen, D.S. Xu: J. Phys. Chem. C Vol. 113 (2009), p.6310.

Google Scholar