Simulation on the Dielectrophoretic Assembly of Carbon Nanotubes

Article Preview

Abstract:

Dielectrophoresis (DEP) has been verified to be an efficient means of assembling carbon nanotubes (CNTs) for various applications. This paper simulates the electric field distribution of the quadruple electrode structure when the external AC voltage is applied between a pair of opposite electrodes. There exist induced electric potentials between high voltage electrodes and floating electrodes and thus floating electrodes seriously change the field distribution. For a pair of wide parallel electrodes, the deposition of one CNT bridging the electrode pair will greatly alter the local electric field and repel the further deposition of CNTs in the vicinity. The screening distance is relevant with the width of the electrode gap, which provides a way to estimate the density of assembled CNTs between the electrode pair.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

328-331

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C. Cheung and C.M. Lieber: Science Vol. 289 (2000), p.94.

Google Scholar

[3] M.J. Biercuk, M. Mason and C.M. Marcus: Nano Lett. Vol. 4 (2004), p.1.

Google Scholar

[4] A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker: Science Vol. 294 (2001), p.1317.

Google Scholar

[5] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dai: Science Vol. 287 (2000), p.622.

Google Scholar

[6] K. Molhave, T.M. Hansen, D.N. Madsen, P. Boggild and J. Nanosci: Nanotechnology Vol. 4 (2004), p.279.

Google Scholar

[7] Y. Huang, X.F. Duan, Q.Q. Wei and C.M. Lieber: Science Vol. 291 (2001), p.630.

Google Scholar

[8] B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath and P.M. Ajayan: Chem. Mater. Vol. 15 (2003), p.1598.

Google Scholar

[9] M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R. S. Mclean, S.R. Lustig, R.E. Richardson and N.G. Tassi: Nat. Mater. Vol. 2 (2003), p.338.

DOI: 10.1038/nmat877

Google Scholar

[10] Y-T Jang, J-H Ahn, B-K Ju and Y-H Lee: Solid State Commun. Vol. 126 (2003), p.305.

Google Scholar

[11] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff: Science Vol. 287 (2000), p.637.

Google Scholar

[12] R. Krupke, F. Hennrich, H. Löhneysen and M.M. Kappes: Science Vol. 301 (2003), p.344.

Google Scholar

[13] R. Krupke, F. Hennrich, H.B. Weber, M.M. Kappes and H.V. Löhneysen: Nano Lett. Vol. 3 (2003), p.1019.

Google Scholar

[14] J-E Kim and C-S Han: Nanotechnology 16 (2005), p.2245.

Google Scholar

[15] S-G Kwon, S-H Kim, K-H Kim, M-C Kang and H-W Lee: Trans. Nonferrous Met. Soc. China Vol. 21 (2011), p.117.

Google Scholar

[16] D.D. Xu, A. Subramanian, L.X. Dong and B.J. Nelson: IEEE transactions on nanotechnology Vol. 8 (2009), p.449.

Google Scholar

[17] R.H.M. Chan, C.K.M. Fung and W.J. Li: Nanotechnology Vol. 15 (2004), p.672.

Google Scholar

[18] Z. Chen, J. Appenzeller, J. Knoch, Y. Lin and P. Avouris: Nano Lett. Vol. 5 (2005), p.1497.

Google Scholar