A Study of Optimum Conditions for Electrospinning Cellulose Acetate Nanofibers in Trifluoroacetic Acid Solvent

Article Preview

Abstract:

Cellulose acetate (CA) nanofibers were electrospun in trifluoroacetic acid (TFA) under various conditions of concentration, voltage and dope flow rate while tip to collector distance (TCD) kept constant. Results showed that concentrations lower than 8 wt. % could only be electrospun at low flow rates. Bead free fibers were easily electrospun from higher CA concentrations 13 wt. % to 15 wt. %. Concentrations greater than 15 wt. % formed a viscous solution that could not be uniformly dispersed, thus impeding electrospinning. Medium voltage 20KV was found to produce good fibers while flow rates of 0.5ml/h and above, produced non-uniform fibers with a wide range. Average fiber diameters of 104nm and 129nm were formed at 13 wt. % and 15 wt. % (0.4ml/h, 20KV) respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

323-327

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, Macromolecular rapid communications, 25 (2004) 1632-1637.

Google Scholar

[2] J. Su, Q. Yang, J.F. Teo, T. -S. Chung, Journal of membrane science, 355 (2010) 36-44.

Google Scholar

[3] Y. Tian, M. Wu, R. Liu, Y. Li, D. Wang, J. Tan, R. Wu, Y. Huang, Carbohydrate Polymers, 83 (2011) 743-748.

Google Scholar

[4] S. Tungprapa, I. Jangchud, P. Supaphol, Polymer, 48 (2007) 5030-5041.

DOI: 10.1016/j.polymer.2007.06.061

Google Scholar

[5] L. Zhang, T.J. Menkhaus, H. Fong, Journal of membrane science, 319 (2008) 176-184.

Google Scholar

[6] W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, Journal of Polymer Science Part B: Polymer Physics, 42 (2003) 5-11.

Google Scholar

[7] S. Ramakrishna, An introduction to electrospinning and nanofibers, World Scientific Publishing Company, (2005).

Google Scholar

[8] J. Stanger, N. Tucker, Electrospinning: Rapra Review Report, ISmithers Rapra Pub., (2009).

Google Scholar

[9] T. Subbiah, G. Bhat, R. Tock, S. Parameswaran, S. Ramkumar, Journal of Applied Polymer Science, 96 (2005) 557-569.

DOI: 10.1002/app.21481

Google Scholar

[10] D. Li, Y. Xia, Advanced Materials, 16 (2004) 1151-1170.

Google Scholar

[11] S.O. Han, J.H. Youk, K.D. Min, Y.O. Kang, W.H. Park, Materials Letters, 62 (2008) 759-762.

Google Scholar

[12] H. Liu, Y.L. Hsieh, Journal of Polymer Science Part B: Polymer Physics, 40 (2002) 2119-2129.

Google Scholar

[13] H. Liu, C. Tang, Polymer Journal, 39 (2006) 65-72.

Google Scholar

[14] S. Tungprapa, T. Puangparn, M. Weerasombut, I. Jangchud, P. Fakum, S. Semongkhol, C. Meechaisue, P. Supaphol, Cellulose, 14 (2007) 563-575.

DOI: 10.1007/s10570-007-9113-4

Google Scholar

[15] W. Zhou, J. He, S. Cui, W. Gao, Open Materials Science Journal, 5 (2011) 51-55.

Google Scholar

[16] J.P. Jeun, Y.M. Lim, Y.C. Nho, Journal of Industrial and Engineering Chemistry, 11 (2005) 573-578.

Google Scholar

[17] J.Y. Park, I.H. Lee, G.N. Bea, Journal of Industrial and Engineering Chemistry, 14 (2008) 707-713.

Google Scholar

[18] J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Biomacromolecules, 3 (2002) 232-238.

Google Scholar