Hierarchical Porous Materials for Supercapacitors

Article Preview

Abstract:

Hierarchical porous materials with improved properties due to enhanced mass transport through the material and a high surface area and pore volume have been used in numerous applications such as catalysts or catalyst supports, energy storage and conversion, filtration, medical diagnostics, and medical therapies. This paper presents a review of recent progress in hierarchical porous materials for supercapacitor electrodes. Hierarchical porous materials comprise of hierarchical porous carbon, hierarchical porous metal oxides and hierarchical porous composites. An emphasis is placed on the performance of hierarchical porous materials for supercapacitor electrodes in terms of specific capacitance, power density, energy density, rate capability and cyclic stability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

894-898

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Li and D. Zhao. Chem. Commun. Vol. 49 (2013), p.943.

Google Scholar

[2] Z.Y. Yuan and B.L. Su. J. Mater. Chem. Vol. 16 (2006), p.663.

Google Scholar

[3] N.D. Petkovich and A. Stein. Chem. Soc. Rev. Vol. (2013), doi: 10. 1039/c2cs35308c.

Google Scholar

[4] L.L. Zhang and X.S. Zhao. Chem. Soc. Rev. Vol. 38 (2009), p.2520.

Google Scholar

[5] H. Jiang, P.S. Lee and C. Li. Energy Environ. Sci. Vol. 6 (2013), p.41.

Google Scholar

[6] D.W. Wang, F. Li, M. Liu, G.Q. Lu and H.M. Cheng. Angew. Chem. Int. Ed. Vol. 47 (2008), p.373.

Google Scholar

[7] F. Xu, R.J. Cai, Q.C. Zeng, C. Zou, D.C. Wu, F. Li, X.E. Lu, Y.R. Liang and R.W. Fu. J. Mater. Chem. Vol. 21 (2011), p. (1970).

Google Scholar

[8] H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi and T. Kudo. J. Phys. Chem. C Vol. 111 (2007), p.227.

Google Scholar

[9] Y. Han, X.T. Dong, C. Zhang and S.X. Liu. J. Power Sources Vol. 211 (2012), p.92.

Google Scholar

[10] M. Rose, Y. Korenblit, E. Kockrick, L. Borchardt, M. Oschatz, S. Kaskel and G. Yushin. Small Vol. 7 (2011), p.1108.

DOI: 10.1002/smll.201001898

Google Scholar

[11] C.H. Huang, Q. Zhang, T.C. Chou, C.M. Chen, D.S. Su and R.A. Doong. Chemsuschem Vol. 5 (2012), p.563.

Google Scholar

[12] C.M. Chen, Q. Zhang, X.C. Zhao, B.S. Zhang, Q.Q. Kong, M.G. Yang, Q.H. Yang, M.Z. Wang, Y.G. Yang, R. Schlogl and D.S. Su. J. Mater. Chem. Vol. 22 (2012), p.14076.

Google Scholar

[13] Z.J. Zheng and Q.M. Gao. J. Power Sources Vol. 196 (2011), p.1615.

Google Scholar

[14] D.C. Guo, J. Mi, G.P. Hao, W. Dong, G. Xiong, W.C. Li and A.H. Lu. Energy Environ. Sci. Vol. 6 (2013), p.652.

Google Scholar

[15] H.M. Sun, L.Y. Cao and L.H. Lu. Energy Environ. Sci. Vol. 5 (2012), p.6206.

Google Scholar

[16] W.T. Huang, H. Zhang, Y.Q. Huang, W.K. Wang and S.C. Wei. Carbon Vol. 49 (2011), p.838.

Google Scholar

[17] W.X. Chen, H. Zhang, Y.Q. Huang and W.K. Wang. J. Mater. Chem. Vol. 20 (2010), p.4773.

Google Scholar

[18] D.P. Dubal, R. Holze and P.M. Kulal. J. Mater. Sci. Vol. 48 (2013), p.714.

Google Scholar

[19] S.K. Meher and G.R. Rao. J. Power Sources Vol. 215 (2012), p.317.

Google Scholar

[20] H. Jiang, T. Sun, C.Z. Li and J. Ma. J. Mater. Chem. Vol. 22 (2012), p.2751.

Google Scholar

[21] L.G. Xue, H. Hao, Z. Wei, T. Huang and A.S. Yu. J. Solid State Electrochem. Vol. 15 (2011), p.485.

Google Scholar

[22] Y.Q. Zhang, X.H. Xia, J.P. Tu, Y.J. Mai, S.J. Shi, X.L. Wang and C.D. Gu. J. Power Sources Vol. 199 (2012), p.413.

Google Scholar

[23] X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu and X.B. Zhao. J. Mater. Chem. Vol. 21 (2011), p.671.

Google Scholar

[24] Y. Ren and L.A. Gao. J. Am. Ceram. Soc. Vol. 93 (2010), p.3560.

Google Scholar

[25] C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao and L.F. Shen. J. Mater. Chem. Vol. 19 (2009), p.5772.

Google Scholar

[26] X. Wang, A. Sumboja, E. Khoo, C.Y. Yan and P.S. Lee. J. Phys. Chem. C Vol. 116 (2012), p.4930.

Google Scholar

[27] B.R. Duan and Q. Cao. Electrochim. Acta Vol. 64 (2012), p.154.

Google Scholar

[28] X.H. Xia, J.P. Tu, J. Zhang, X.H. Huang, X.L. Wang and X.B. Zhao. Electrochim. Acta Vol. 55 (2010), p.989.

Google Scholar

[29] Y.F. Yuan, X.H. Xia, J.B. Wu, X.H. Huang, Y.B. Pei, J.L. Yang and S.Y. Guo. Electrochem. Commun. Vol. 13 (2011), p.1123.

Google Scholar

[30] Y. Li, K. Huang, S. Liu, Z. Yao and S. Zhuang. J. Solid State Electrochem. Vol. 15 (2011), p.587.

Google Scholar

[31] Y. Peng, Z. Chen, J. Wen, Q. Xiao, D. Weng, S. He, H. Geng and Y. Lu. Nano Research Vol. 4 (2011), p.216.

Google Scholar

[32] J. Zhang, L.B. Kong, J.J. Cai, H. Li, Y.C. Luo and L. Kang. Microporous Mesoporous Mater. Vol. 132 (2010), p.154.

Google Scholar