[1]
W. Li and D. Zhao. Chem. Commun. Vol. 49 (2013), p.943.
Google Scholar
[2]
Z.Y. Yuan and B.L. Su. J. Mater. Chem. Vol. 16 (2006), p.663.
Google Scholar
[3]
N.D. Petkovich and A. Stein. Chem. Soc. Rev. Vol. (2013), doi: 10. 1039/c2cs35308c.
Google Scholar
[4]
L.L. Zhang and X.S. Zhao. Chem. Soc. Rev. Vol. 38 (2009), p.2520.
Google Scholar
[5]
H. Jiang, P.S. Lee and C. Li. Energy Environ. Sci. Vol. 6 (2013), p.41.
Google Scholar
[6]
D.W. Wang, F. Li, M. Liu, G.Q. Lu and H.M. Cheng. Angew. Chem. Int. Ed. Vol. 47 (2008), p.373.
Google Scholar
[7]
F. Xu, R.J. Cai, Q.C. Zeng, C. Zou, D.C. Wu, F. Li, X.E. Lu, Y.R. Liang and R.W. Fu. J. Mater. Chem. Vol. 21 (2011), p. (1970).
Google Scholar
[8]
H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi and T. Kudo. J. Phys. Chem. C Vol. 111 (2007), p.227.
Google Scholar
[9]
Y. Han, X.T. Dong, C. Zhang and S.X. Liu. J. Power Sources Vol. 211 (2012), p.92.
Google Scholar
[10]
M. Rose, Y. Korenblit, E. Kockrick, L. Borchardt, M. Oschatz, S. Kaskel and G. Yushin. Small Vol. 7 (2011), p.1108.
DOI: 10.1002/smll.201001898
Google Scholar
[11]
C.H. Huang, Q. Zhang, T.C. Chou, C.M. Chen, D.S. Su and R.A. Doong. Chemsuschem Vol. 5 (2012), p.563.
Google Scholar
[12]
C.M. Chen, Q. Zhang, X.C. Zhao, B.S. Zhang, Q.Q. Kong, M.G. Yang, Q.H. Yang, M.Z. Wang, Y.G. Yang, R. Schlogl and D.S. Su. J. Mater. Chem. Vol. 22 (2012), p.14076.
Google Scholar
[13]
Z.J. Zheng and Q.M. Gao. J. Power Sources Vol. 196 (2011), p.1615.
Google Scholar
[14]
D.C. Guo, J. Mi, G.P. Hao, W. Dong, G. Xiong, W.C. Li and A.H. Lu. Energy Environ. Sci. Vol. 6 (2013), p.652.
Google Scholar
[15]
H.M. Sun, L.Y. Cao and L.H. Lu. Energy Environ. Sci. Vol. 5 (2012), p.6206.
Google Scholar
[16]
W.T. Huang, H. Zhang, Y.Q. Huang, W.K. Wang and S.C. Wei. Carbon Vol. 49 (2011), p.838.
Google Scholar
[17]
W.X. Chen, H. Zhang, Y.Q. Huang and W.K. Wang. J. Mater. Chem. Vol. 20 (2010), p.4773.
Google Scholar
[18]
D.P. Dubal, R. Holze and P.M. Kulal. J. Mater. Sci. Vol. 48 (2013), p.714.
Google Scholar
[19]
S.K. Meher and G.R. Rao. J. Power Sources Vol. 215 (2012), p.317.
Google Scholar
[20]
H. Jiang, T. Sun, C.Z. Li and J. Ma. J. Mater. Chem. Vol. 22 (2012), p.2751.
Google Scholar
[21]
L.G. Xue, H. Hao, Z. Wei, T. Huang and A.S. Yu. J. Solid State Electrochem. Vol. 15 (2011), p.485.
Google Scholar
[22]
Y.Q. Zhang, X.H. Xia, J.P. Tu, Y.J. Mai, S.J. Shi, X.L. Wang and C.D. Gu. J. Power Sources Vol. 199 (2012), p.413.
Google Scholar
[23]
X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu and X.B. Zhao. J. Mater. Chem. Vol. 21 (2011), p.671.
Google Scholar
[24]
Y. Ren and L.A. Gao. J. Am. Ceram. Soc. Vol. 93 (2010), p.3560.
Google Scholar
[25]
C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao and L.F. Shen. J. Mater. Chem. Vol. 19 (2009), p.5772.
Google Scholar
[26]
X. Wang, A. Sumboja, E. Khoo, C.Y. Yan and P.S. Lee. J. Phys. Chem. C Vol. 116 (2012), p.4930.
Google Scholar
[27]
B.R. Duan and Q. Cao. Electrochim. Acta Vol. 64 (2012), p.154.
Google Scholar
[28]
X.H. Xia, J.P. Tu, J. Zhang, X.H. Huang, X.L. Wang and X.B. Zhao. Electrochim. Acta Vol. 55 (2010), p.989.
Google Scholar
[29]
Y.F. Yuan, X.H. Xia, J.B. Wu, X.H. Huang, Y.B. Pei, J.L. Yang and S.Y. Guo. Electrochem. Commun. Vol. 13 (2011), p.1123.
Google Scholar
[30]
Y. Li, K. Huang, S. Liu, Z. Yao and S. Zhuang. J. Solid State Electrochem. Vol. 15 (2011), p.587.
Google Scholar
[31]
Y. Peng, Z. Chen, J. Wen, Q. Xiao, D. Weng, S. He, H. Geng and Y. Lu. Nano Research Vol. 4 (2011), p.216.
Google Scholar
[32]
J. Zhang, L.B. Kong, J.J. Cai, H. Li, Y.C. Luo and L. Kang. Microporous Mesoporous Mater. Vol. 132 (2010), p.154.
Google Scholar