[1]
A. Gladkov, K. Kim, Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition, J. Math. Anal. Appl. Vol. 338 (2008), p.264–273.
DOI: 10.1016/j.jmaa.2007.05.028
Google Scholar
[2]
C. Peng, Z. Yang, Blow-up for a degenerate parabolic equation with a nonlocal source, Appl. Math. Compu. Vol. 201 (2008), p.250–259.
DOI: 10.1016/j.amc.2007.12.049
Google Scholar
[3]
J. Wang, Global existence and blow-up solutions for doubly degenerate parabolic system with nonlocal source, J. Math. Anal. Appl. Vol. 374 (2011), p.290–310.
DOI: 10.1016/j.jmaa.2010.08.078
Google Scholar
[4]
Q. Liu, Y. Li, H. Gao, Uniform blow-up rate for diffusion equations with nonlocal nonlinear source, Nonlinear Anal. Vol. 67 (2007), p.1947–(1957).
DOI: 10.1016/j.na.2006.08.030
Google Scholar
[5]
M. Li, M. Chen, Blow up properties for nonlinear degenerate diffusion equations with nonlocal sources, Nonlinear Anal. Vol. 11 (2010), pp.1122-1130.
DOI: 10.1016/j.nonrwa.2009.02.006
Google Scholar
[6]
X. Wu, W. Gao, Global existence and blow-up of solutions to an evolution p-Laplace system coupled via nonlocal sources, J. Math. Anal. Appl. Vol. 358 (2009), p.229–237.
DOI: 10.1016/j.jmaa.2009.04.059
Google Scholar
[7]
S. Zheng, H. Su, A quasilinear reaction-diffusion system coupled via nonlocal sources, App. Math. Compu. Vol. 180 (2008), p.295–308.
DOI: 10.1016/j.amc.2005.12.020
Google Scholar