The Properties of Solutions on a Class of Parabolic System

Article Preview

Abstract:

By the method of up-sub solutions, we consider a class of parabolic equations with nonlocal source. In the paper, we discuss the relation of the coefficients and the importance of the initial value. We get the sufficient conditions for the global existence and finite blow-up of the solutions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 753-755)

Pages:

2945-2948

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Gladkov, K. Kim, Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition, J. Math. Anal. Appl. Vol. 338 (2008), p.264–273.

DOI: 10.1016/j.jmaa.2007.05.028

Google Scholar

[2] C. Peng, Z. Yang, Blow-up for a degenerate parabolic equation with a nonlocal source, Appl. Math. Compu. Vol. 201 (2008), p.250–259.

DOI: 10.1016/j.amc.2007.12.049

Google Scholar

[3] J. Wang, Global existence and blow-up solutions for doubly degenerate parabolic system with nonlocal source, J. Math. Anal. Appl. Vol. 374 (2011), p.290–310.

DOI: 10.1016/j.jmaa.2010.08.078

Google Scholar

[4] Q. Liu, Y. Li, H. Gao, Uniform blow-up rate for diffusion equations with nonlocal nonlinear source, Nonlinear Anal. Vol. 67 (2007), p.1947–(1957).

DOI: 10.1016/j.na.2006.08.030

Google Scholar

[5] M. Li, M. Chen, Blow up properties for nonlinear degenerate diffusion equations with nonlocal sources, Nonlinear Anal. Vol. 11 (2010), pp.1122-1130.

DOI: 10.1016/j.nonrwa.2009.02.006

Google Scholar

[6] X. Wu, W. Gao, Global existence and blow-up of solutions to an evolution p-Laplace system coupled via nonlocal sources, J. Math. Anal. Appl. Vol. 358 (2009), p.229–237.

DOI: 10.1016/j.jmaa.2009.04.059

Google Scholar

[7] S. Zheng, H. Su, A quasilinear reaction-diffusion system coupled via nonlocal sources, App. Math. Compu. Vol. 180 (2008), p.295–308.

DOI: 10.1016/j.amc.2005.12.020

Google Scholar