[1]
C. Xie and X. F. Yang, Exchange rate forecasts theories and methods and recent development, Journal of Hunan University (Social Sciences) 18(2004) 45-50.
Google Scholar
[2]
Box, G. E. P. and Jenkins, G. M. Time Series Analysis, Forecasting and Control. San Francisco, CA: Holden Day, (1976).
Google Scholar
[3]
Engle RF. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of UK Inflation. Econom etrica, 1982, 50(4): 987-1006.
DOI: 10.2307/1912773
Google Scholar
[4]
Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 1986, 31: 307-327.
DOI: 10.1016/0304-4076(86)90063-1
Google Scholar
[5]
Rumelhart, D. E., Hinton, G. E., &Williams, R. J. (1986a). Learning representations by back-propagating errors. Nature, 323, 533–536.
DOI: 10.1038/323533a0
Google Scholar
[6]
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimisation by simulated annealing. Science, 220, 671–680.
DOI: 10.1126/science.220.4598.671
Google Scholar
[7]
T. Bollerslev, Modeling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model, Review of Economics and Statistics 72 (1990) 498–505.
DOI: 10.2307/2109358
Google Scholar
[8]
J. T. Davis, A. Episcopos and S. Wettimuny, Predicting direction shifts on Canadian-US exchange rates with artificial neural networks, International Journal of Intelligent Systems in Accounting, Finance and Management 10 (2001) 83–96.
DOI: 10.1002/isaf.200
Google Scholar
[9]
Tambi, M. K. (2005). Forecasting exchange rate a univariate out of sample approach. 0506005 Int. Finance Economics working paper archive.
Google Scholar
[10]
J. T. Yao and C. L. Tan, A case study on using neural networks to perform technical forecasting of forex, Neurocomputing 34 (2000) 79–98.
DOI: 10.1016/s0925-2312(00)00300-3
Google Scholar
[11]
S. Walczak, An empirical analysis of data requirements for financial forecasting with neural networks, Journal of Management Information System 17(4) (2001) 203–222.
Google Scholar
[12]
Shyh, J.H., Kuang, R.S.: Short-term Load Forecasting Via ARMA Model Identification Including Non-Gaussian Process Considerations. IEEE Transactions on Power Systems 18, 673–679 (2003).
DOI: 10.1109/tpwrs.2003.811010
Google Scholar
[13]
Baczynski, D., Parol, M.: Influence of Artificial Neural Network Structure on Quality of Short-term Electric Energy Consumption Forecast. IEEE Proceedings Generation, Transmission and Distribution 151, 241–245 (2004).
DOI: 10.1049/ip-gtd:20040070
Google Scholar
[14]
Saksornchai, T., Lee, W.J., Methaprayoon, K.: Improve the Unit Commitment Scheduling by Using the Neural-Network-Based Short-Term Load Forecasting. IEEE Transactions on Industry Applications 41, 169–179 (2005).
DOI: 10.1109/tia.2004.841029
Google Scholar
[15]
Yu, S.W., Zhu, K.J., Diao, F.Q.: A Dynamic All Parameters Adaptive BP Neural Networks Model and Its Application on Oil Reservoir Prediction. Applied Mathematics and Computation 195, 66–75 (2008).
DOI: 10.1016/j.amc.2007.04.088
Google Scholar
[16]
Chen, A.S., Leung, M.T.: Regression neural network for error correction in foreign exchange forecasting and trading. Computers and Operations Research, 31, (2004) 1049-1068.
DOI: 10.1016/s0305-0548(03)00064-9
Google Scholar
[17]
Dunis, C, L. and Williams, M. (2002) Modeling and trading the UER/USD exchange rate: Do Neural Network models perform better?. In derivatives Use, Trading and Regulation, Vol. No. 8, 3, pages 211-239.
Google Scholar
[18]
L. Kilian, M.P. Taylor, Why is it so difficult to beat random walk forecast of exchange rates, Journal of International Economics 60 (2003) 85–107.
DOI: 10.1016/s0022-1996(02)00060-0
Google Scholar
[19]
A. -S. Chen, M.T. Leung, Regression neural network for error correction in foreign exchange forecasting and trading, Computers and Operations Research 31 (2004) 1049–1068.
DOI: 10.1016/s0305-0548(03)00064-9
Google Scholar
[20]
V. Kodogiannis, A. Lolis, Forecasting financial time series using neural network and fuzzy system-based techniques, Neural Computing and Applications 11 (2002) 90–102.
DOI: 10.1007/s005210200021
Google Scholar
[21]
E. Jondeau, M. Rockinger, The Copula-GARCH model of conditional dependencies: an international stock market application, Journal of International Money and Finance 25 (2006) 827–853.
DOI: 10.1016/j.jimonfin.2006.04.007
Google Scholar
[22]
Aslanidis, N., & Kouretas, G. P. (2005). Testing for two-regime threshold cointegration in the parallel and official markets for foreign currency in Greece. Economic Modelling, 22(4), 665–682.
DOI: 10.1016/j.econmod.2005.02.002
Google Scholar
[23]
Bildirici, M., & Ersin, Ö. Ö. (2009). Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange. Expert Systems with Applications, 36(4), 7355–7362.
DOI: 10.1016/j.eswa.2008.09.051
Google Scholar
[24]
Hamid, S. A., & Iqbal, Z. (2004). Using neural networks for forecasting volatility of S&P 500 Index futures prices. Journal of Business Research, 57, 1116–1125.
DOI: 10.1016/s0148-2963(03)00043-2
Google Scholar
[25]
Wu, W., Yang, H.: Forecasting New Taiwan Dollar/United States Dollar exchange rate using neural network. The Business Review 7(1), 63–70 (2007).
Google Scholar