[1]
Hans-Dieter Alber: Evolving microstructure and homogenization, Continuum Mechanics and Thermodynamics, Vol. 12(2000), pp.235-286.
DOI: 10.1007/s001610050137
Google Scholar
[2]
Hans-Dieter Alber, and Peicheng Zhu: Evolution of phase boundaries by configurational forces, Archive for Rational Mechanics and Analysis, Vol. 185(2007), pp.235-286.
DOI: 10.1007/s00205-007-0054-8
Google Scholar
[3]
Abeyaratne R. And Knowles J.: On the driving traction action on a surface of strain discontinuity in a continuum, Journal of the Mechanics and Physics of Solids, Vol. 38(1990), pp.345-360.
DOI: 10.1016/0022-5096(90)90003-m
Google Scholar
[4]
Morton E. Gurtin: Configurational Forces as Basic Concepts of Contiumn Physics, Springer Verlag, New York(2000).
Google Scholar
[5]
Hans-Dieter Alber, and Peicheng Zhu: Solutions to a model with non-uniformly parabolic terms for phase evolution driven by configurational force, SIAM SIAM Journal on Applied Mathematics, Vol. 66(2006) No. 2, pp.680-699.
DOI: 10.1137/050629951
Google Scholar
[6]
Hans-Dieter Alber, and Peicheng Zhu: Solutions to a model for interface motion by interface diffusion, Proceeding of the Royal Society of Edinburgh, Vol. 138A(2008) pp.923-955.
DOI: 10.1017/s0308210507000170
Google Scholar
[7]
Hans-Dieter Alber, and Peicheng Zhu: Interface motion by interface diffusion driven by bulk energy: justification of a diffusive interface model, Continuum Mechanics Thermodynamics. Vol. 23(2011), pp.139-176.
DOI: 10.1007/s00161-010-0162-9
Google Scholar
[8]
Peicheng Zhu: Solvability via viscosity solutions for a model of phase transitions driven by configurational forces, Journal of Differential Equations, Vol. 251(2011), pp.2833-2852.
DOI: 10.1016/j.jde.2011.05.035
Google Scholar
[9]
Shuichi Kawashima and Peicheng Zhu: Traveling waves of models of phase transitions of solids driven by configurational forces, Discrete and Continuous Dynamical Systems-Series B, Vol 15(2011).
DOI: 10.3934/dcdsb.2011.15.309
Google Scholar
[10]
Guo Chang-hong, Liu Xiang-dong, and Fang Shao-mei: Exact Traveling Wave Solutions to a Model for Solid-Solid Phase Transitions Driven by Configurational Forces, Advance Materials Research, Vol. 418-420(2011), p.1694. 1694.
DOI: 10.4028/www.scientific.net/amr.418-420.1694
Google Scholar
[11]
Jacob Rubinstein, Peter Sternberg, and Joseph B. Keller: Fast reaction, slow diffusion and curve shortening, SIAM Journal on Applied Mathematics, Vol. 49(1989), pp.116-133.
DOI: 10.1137/0149007
Google Scholar
[12]
Alain Pietrus, Maite Carrive, Alain Miranville: The Cahn-Hilliard equation for deformable elastic continua, Adavances in Mathematical Sciences and Applications, Vol. 10(2000), pp.539-569.
Google Scholar
[13]
Harald Garcke: On Cahn-Hilliard systems with elasticity, Proceeding of the Royal Society of Edinburgh, Vol. 133A(2003), pp.307-331.
DOI: 10.1017/s0308210500002419
Google Scholar
[14]
Irena Pawlow, and Wojciech M. Zajaczkowski: Classical solvability of the 1-D Cahn-Hilliard equation coupled with elasticity, Mathematical Methods in the Applied Science, Vol. 29(2006), pp.853-876.
DOI: 10.1002/mma.715
Google Scholar
[15]
J.M. Thomas: Numerical Partial Differential Equations, Finite Difference Methods, Springer(1995).
Google Scholar
[16]
Yaobin Ou and Peicheng Zhu: Spherically symmetric solutions to a model for phase transitions driven by configurational forces, Journal of Mathematical Physics, Vol. 52(9)(2011), p.093708.
DOI: 10.1063/1.3640040
Google Scholar