Uniqueness of Q-Difference Polynomials of Meromorphic Functions

Article Preview

Abstract:

In this paper, Applying the theory of Nevanlinna, we investigated uniqueness problem of difference polynomial of meromorphic functions and obtained uniqueness theorems of meromorphic functions , which Extended and improved the results of literature [5].

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

2948-2951

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.X. Chen, Z.B. Huang X.M. Zheng, On properties of difference polynomials. Acta Math Sci, vol. 31B, pp.627-633, (2011).

Google Scholar

[2] J.L. Zhang, Value distribution and shared sets of diferences of meromorphic functions. Math Anal Appl, vol 367, pp.401-408, (2010).

Google Scholar

[3] Z.B. Huang Z.X. Chen, A Clunie lemma for difference and q-difference polynomials Bull. Aust. Math. Soc. vol81, pp.23-32, (2010).

DOI: 10.1017/s0004972709000811

Google Scholar

[4] J.L. Zhang, R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications,J. Math. Anal. Appl. vol369, pp.537-544., (2010).

Google Scholar

[5] C.C. Yang, I. Laine, On analogies between nonlinear difference and differential equations. Pro Japan Acad Ser A, vol86, pp.10-14. (2010).

Google Scholar

[6] Y. M. Chiang, S. J. Feng. On the Nevanlinna characteristic of f(z+h) anddifference equations in the complex plane. Ramanujian J. vol. 16, pp.105-129, (2008).

Google Scholar

[7] R. G. Halburd and R. J. Korhonen. Meromorphic solutions of difference equations, integrability and the discrete Painleve equations, J. Phys. A. vol. 40, pp.1-38, (2007).

DOI: 10.1088/1751-8113/40/6/r01

Google Scholar

[8] C.C. Yang, H.X. Yi. Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers, (2003).

Google Scholar

[9] I. Laine. Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, (1993).

Google Scholar

[10] D. Barnett R.G. Halburd R.J. Korhonen,W. Morgan. Nevanlinna theory for the q-difference operator and meromorphic solutions of q-differenceequations. Proc. Roy. Soc. Edinburgh Sect. A , vol. 137, pp.457-474, (2007).

DOI: 10.1017/s0308210506000102

Google Scholar

[11] K. Liu, X.L. Liu, T.B. Cao, Value Distributions and Uniqueness of Difference Polynomials, Advance in Difference Equations, vol. 2011, Article ID 234215. 12 pages.

DOI: 10.1155/2011/234215

Google Scholar