[1]
J.C. Wierman, D.J. Marchette, Modeling computer virus prevalence with a susceptible-infected- susceptible model with reintroduction, Computational Statistics & Data Analysis 45 (2004) 3–23.
DOI: 10.1016/s0167-9473(03)00113-0
Google Scholar
[2]
J.R.C. Piqueira, V.O. Araujo, A modified epidemiological model for computer viruses, Applied Mathematics and Computation, 213 (2009) 355–360.
DOI: 10.1016/j.amc.2009.03.023
Google Scholar
[3]
Han X, Tan Q, Dynamical behavior of computer virus on Internet, Appl Math Comput, 217 (2010) 2520–2526.
Google Scholar
[4]
B.K. Mishra, S.K. Pandey, Dynamic model of worms with vertical transmission in computer network, Applied Mathematics and Computation, 217(2011) 8438–8446.
DOI: 10.1016/j.amc.2011.03.041
Google Scholar
[5]
L.P. Song, Z. Jin, G.Q. Sun, J. Zhang, X. Han, Influence of removable devices on computer worms: dynamic analysis and control strategies, Computers and Mathematics with Applications, 61 (2011) 1823–1829.
DOI: 10.1016/j.camwa.2011.02.010
Google Scholar
[6]
Ren J, Yang X, Yang L, Xu Y, Yang F. A delayed computer virus propagation model and its dynamics. Chaos Soliton Fract , 45(2012)74–9.
DOI: 10.1016/j.chaos.2011.10.003
Google Scholar
[7]
Ren J, Yang X, Zhu Q, Yang L, Zhang C. A novel computer virus model and its dynamics. Nonlinear Anal-Real, 3(2012)376–84.
Google Scholar
[8]
Wenjun Cao, Jin Zhen, The dynamics of the constant and pulse birth in an SIR epidemic model with constant recruitment, Journal of Biological Systems, 15(2007)203-218.
DOI: 10.1142/s0218339007002118
Google Scholar
[9]
Zhien Ma, Yingcang Zhou, Wendi Wang, Zhen Jin, Mathematical modeling of the dynamics of infectious diseases and research, Science Press, Beijing, 2004, pp.303-306.
Google Scholar
[10]
D.D. Bainov and P.S. Simeonov, Impulsive differential equations: Periodic solutions and applications, Longman Scientific and Technical. (1993).
Google Scholar