[1]
X. Zhang. Theory and application of array signal processing, National Defense Industry Press, Beijing, (2010).
Google Scholar
[2]
Y. Chiba, K. Ichige, H. Arai, Reducing DOA Estimation Error In Extended ES-Root-MUSIC for Uniform Rectangular Array, , 2011 4th International Congress on Image and Signal Processing, 2011, vol. 5, p.2621 – 2625.
DOI: 10.1109/cisp.2011.6100695
Google Scholar
[3]
T. Filik and T. E. Tuncer, 2-D paired direction-of-arrival angle estimation with two parallel uniform linear arrays, , International Journal of Innovative Computing, Information and Control, vol. 7, no. 6, pp.3269-3279, Jun. (2011).
Google Scholar
[4]
Y. -Y. Wang, S. -C. Huang, An ESPRIT-Based Algorithm for 2D-DOA Estimation, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. e94-a, no. 9, pp.1847-1850, Sep. (2011).
DOI: 10.1587/transfun.e94.a.1847
Google Scholar
[5]
C. P. Mathews, M. Haardt, and M. D. Zoltowski, Performance Analysis of Closed-Form, ESPRIT Based 2D Angle Estimator for Rectangular Arrays, IEEE Signal Processing Letters, vol. 3, pp.124-126, Apr. (1996).
DOI: 10.1109/97.489068
Google Scholar
[6]
M. D. Zoltowski, M. Haardt, and C. P. Mathews, Closed-Form 2D Angle Estimation with Rectangular Arrays in Element Space or Beamspace via Unitary Esprit, IEEE Trans. on Signal Processing, vol. 44, pp.316-328, February (1996).
DOI: 10.1109/78.485927
Google Scholar
[7]
R. O. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans on antennas and propagation, AP-34(3) (1986) 276-280.
DOI: 10.1109/tap.1986.1143830
Google Scholar
[8]
N.D. Sidiropoulos, , R. Bro, and G.B. Giannakis, , Parallel factor analysis in sensor array processing, , IEEE Trans. Signal Processing, vol. 48, no. 8, pp.2377-2388, Jul. (2000).
DOI: 10.1109/78.852018
Google Scholar
[9]
Raghunandan H. Keshavan and Sewoong Oh: OPTSPACE: A gradient Descent Algorithm on the Grassmann Manifold fo Matrix Completion. http: /arxiv. org/abs/0910. 5260v2, (2009).
Google Scholar
[10]
M. Michenkova. Numerical algorithms for low-rank matrix completion problems. http: /www. math. ethz. ch/~kressner/students/ michenkova. pdf, (2011).
Google Scholar
[11]
P. Chen and D. Suter, Recovering the missing components in a large noisy low-rank matrix: application to sfm, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 8, p.1051–1063, Aug. (2004).
DOI: 10.1109/tpami.2004.52
Google Scholar
[12]
J.F. Cai, E.J. Candès, and Z. Shen, Asingularvaluethresholding algorithm for matrix completion, SIAM J. Optim., vol. 20, no. 4, p.1956–1982, (2008).
Google Scholar
[13]
M. Fazel, Matrix Rank Minimization With Applications, Ph.D. Thesis, Elect. Eng. Dept., Stanford Univ., Stanford, CA, (2002).
Google Scholar