An Improved Tabu Search Algorithm for a Type of Single Machine Sequencing Problem

Article Preview

Abstract:

Machine scheduling is a central task in production planning. In general it means the problem of scheduling job operations on a given number of available machines. In this paper we consider a machine scheduling problem with one machine, or the Single Machine Total Tardiness Problem. To solve this NP-hard problem, we develop an improved Tabu Search Algorithm, which is tested to have the ability to find good results by an example.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 756-759)

Pages:

3997-4001

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Glover F. Heuristics for integer programming using surrogate constraints [J]. Decision Science, 1977, 8(1): 156-166.

DOI: 10.1111/j.1540-5915.1977.tb01074.x

Google Scholar

[2] Glover F. Tabu search-PartⅠ [J]. ORSA Journal on Computing, 1989, 1(3): 190-206.

Google Scholar

[3] Glover F. Tabu search-Part Ⅱ [J]. ORSA Journal on Computing, 1990, 2(1): 4-32.

Google Scholar

[4] Glover F, Taillard E, Werra D de. A user's guide to tabu search [J]. Annals of Operation Research, 1993, 41(1-4): 3-28.

Google Scholar

[5] Glover F, Kelly J P, Laguna M. Genetic algorithms and tabu search: hybrids for optimization [J]. Computers Ops. Res., 1995, 22(1): 111-134.

DOI: 10.1016/0305-0548(93)e0023-m

Google Scholar

[6] Glover F, Hanafi Saı̈d. Tabu search and finite convergence [J]. Discrete Applied Mathematics, 2002, 119: 3-36.

DOI: 10.1016/s0166-218x(01)00263-3

Google Scholar

[7] Michel Gendreau, Alain Hertz and Gilbert Laporte. A Tabu Search Heuristic for the Vehicle Routing Problem [J]. Management Science, 1994 40(10): 1276-1290.

DOI: 10.1287/mnsc.40.10.1276

Google Scholar

[8] Mauro Dell'Amico and Marco Trubian. Applying tabu search to the job-shop scheduling problem [J]. Annals of Operations Research, 1993 41: 231-252.

DOI: 10.1007/bf02023076

Google Scholar

[9] Michel Gendreau, Alain Hertz and Gilbert Laporte. A Tabu Search Heuristic for the Vehicle Routing Problem [J]. Management Science, 1994 40(10): 1276-1290.

DOI: 10.1287/mnsc.40.10.1276

Google Scholar

[10] A. Hertz and D. de Werra, Lausanne. Using Tabu Search Techniques for Graph Coloring [J]. Computing, 1987 39: 345-351.

DOI: 10.1007/bf02239976

Google Scholar

[11] C. N. Fiechter. A parallel tabu search algorithm for large traveling salesman problems [J]. Discrete Applied Mathematics, 1994 51(3): 243–267.

DOI: 10.1016/0166-218x(92)00033-i

Google Scholar

[12] ALFONSAS MISEVICIUS. A Tabu Search Algorithm for the Quadratic Assignment Problem [J]. Computational Optimization and Applications, 2005 30: 95-111.

DOI: 10.1007/s10589-005-4562-x

Google Scholar

[13] Emmons, H. One-machine sequencing to minimize certain functions of job tardiness. Operations Research, 1969, 17: 701-715.

DOI: 10.1287/opre.17.4.701

Google Scholar

[14] Lawler, E. L. A pseudopolynomial, algorithm for sequencing jobs to minimize total tardiness. Annals of Discrete Mathematics, 1997, 1, 331-342.

DOI: 10.1016/s0167-5060(08)70742-8

Google Scholar

[15] Du, J. and Leung, J.Y.T. Minimizing total tardiness on one machine is ZP-hard. Mathematics of Operations Research, 1990, 15, 483-495.

DOI: 10.1287/moor.15.3.483

Google Scholar

[16] Koulamas, C. P. The total tardiness problem: review and extensions. Operations Research, 1994, 42, 1025-1041.

DOI: 10.1287/opre.42.6.1025

Google Scholar

[17] Potts, C.N. and Van Wassenhove, L. N., A decomposition algorithm for the single machine total tardiness problem. Operations Research Letters, 1982, 1, 177-181.

DOI: 10.1016/0167-6377(82)90035-9

Google Scholar

[18] Chu, C., A branch-bound algorithm to minimize total tardiness with different release dates. Naval Research Logistics, 1992, 39, 265-283.

DOI: 10.1002/1520-6750(199203)39:2<265::aid-nav3220390209>3.0.co;2-l

Google Scholar

[19] Fisher, M.L. (1976): A Dual Algorithm for the One-Machine Scheduling Problem, Mathematical Programming 11 pp.229-251.

DOI: 10.1007/bf01580393

Google Scholar

[20] Schrage, L.E. and K. R. Baker (1978): Dynamic Programming Solution of Sequencing Problems with Precedence Constrains, Operations Research 26 pp.444-449.

DOI: 10.1287/opre.26.3.444

Google Scholar

[21] Szwarc, W. and S. Mukhopadhyay (1996): Decomposition of the Single Machine Total Tardiness Problem, Operations Research Letters 19 pp.243-245.

DOI: 10.1016/s0167-6377(96)00031-4

Google Scholar

[22] Della Croce, F., R. Tadei, P. Baracco and A. Grosso(1998): A New Decomposition Approach for the Single Machine Total Tardiness Scheduling Problem, Journal of the Operational Research Society 49 pp.1101-1106.

DOI: 10.1057/palgrave.jors.2600624

Google Scholar

[23] Wilkerson, L. J, and Irwin, J.D. (1971): An Improved Algorithm for Scheduling Independent Tasks, AIIE Transactions 3 pp.239-245.

Google Scholar

[24] Fry, T. D., L. Vicens, K. Macleod and S. Fernandez (1989): A heuristic Solution Procedure to Minimize T on a Single Machine, Journal of the Operational Research Society 40 pp.293-297.

DOI: 10.1057/jors.1989.39

Google Scholar

[25] Hosenback, J. E. and R.M. Russell(1992): A heuristic Algorithm for Sequencing on One Machine to Minimize Total Tardiness, Journal of the Operational Research Society 43 pp.53-62.

DOI: 10.1057/jors.1992.6

Google Scholar

[26] Panwalkar, S. S., M. L. Smith and C. P. Koulamas (1993): A heuristic for the Single Machine Tardiness Problem, European Journal of Operational Research 70 pp.304-310.

DOI: 10.1016/0377-2217(93)90241-e

Google Scholar

[27] Wang Dingwei, the intelligent optimization methods [M], higher education press, (2007).

Google Scholar

[28] R. Panneerselvam, Simple heuristic to minimize total tardiness in a single machine scheduling problem.

Google Scholar