[1]
Glover F. Heuristics for integer programming using surrogate constraints [J]. Decision Science, 1977, 8(1): 156-166.
DOI: 10.1111/j.1540-5915.1977.tb01074.x
Google Scholar
[2]
Glover F. Tabu search-PartⅠ [J]. ORSA Journal on Computing, 1989, 1(3): 190-206.
Google Scholar
[3]
Glover F. Tabu search-Part Ⅱ [J]. ORSA Journal on Computing, 1990, 2(1): 4-32.
Google Scholar
[4]
Glover F, Taillard E, Werra D de. A user's guide to tabu search [J]. Annals of Operation Research, 1993, 41(1-4): 3-28.
Google Scholar
[5]
Glover F, Kelly J P, Laguna M. Genetic algorithms and tabu search: hybrids for optimization [J]. Computers Ops. Res., 1995, 22(1): 111-134.
DOI: 10.1016/0305-0548(93)e0023-m
Google Scholar
[6]
Glover F, Hanafi Saı̈d. Tabu search and finite convergence [J]. Discrete Applied Mathematics, 2002, 119: 3-36.
DOI: 10.1016/s0166-218x(01)00263-3
Google Scholar
[7]
Michel Gendreau, Alain Hertz and Gilbert Laporte. A Tabu Search Heuristic for the Vehicle Routing Problem [J]. Management Science, 1994 40(10): 1276-1290.
DOI: 10.1287/mnsc.40.10.1276
Google Scholar
[8]
Mauro Dell'Amico and Marco Trubian. Applying tabu search to the job-shop scheduling problem [J]. Annals of Operations Research, 1993 41: 231-252.
DOI: 10.1007/bf02023076
Google Scholar
[9]
Michel Gendreau, Alain Hertz and Gilbert Laporte. A Tabu Search Heuristic for the Vehicle Routing Problem [J]. Management Science, 1994 40(10): 1276-1290.
DOI: 10.1287/mnsc.40.10.1276
Google Scholar
[10]
A. Hertz and D. de Werra, Lausanne. Using Tabu Search Techniques for Graph Coloring [J]. Computing, 1987 39: 345-351.
DOI: 10.1007/bf02239976
Google Scholar
[11]
C. N. Fiechter. A parallel tabu search algorithm for large traveling salesman problems [J]. Discrete Applied Mathematics, 1994 51(3): 243–267.
DOI: 10.1016/0166-218x(92)00033-i
Google Scholar
[12]
ALFONSAS MISEVICIUS. A Tabu Search Algorithm for the Quadratic Assignment Problem [J]. Computational Optimization and Applications, 2005 30: 95-111.
DOI: 10.1007/s10589-005-4562-x
Google Scholar
[13]
Emmons, H. One-machine sequencing to minimize certain functions of job tardiness. Operations Research, 1969, 17: 701-715.
DOI: 10.1287/opre.17.4.701
Google Scholar
[14]
Lawler, E. L. A pseudopolynomial, algorithm for sequencing jobs to minimize total tardiness. Annals of Discrete Mathematics, 1997, 1, 331-342.
DOI: 10.1016/s0167-5060(08)70742-8
Google Scholar
[15]
Du, J. and Leung, J.Y.T. Minimizing total tardiness on one machine is ZP-hard. Mathematics of Operations Research, 1990, 15, 483-495.
DOI: 10.1287/moor.15.3.483
Google Scholar
[16]
Koulamas, C. P. The total tardiness problem: review and extensions. Operations Research, 1994, 42, 1025-1041.
DOI: 10.1287/opre.42.6.1025
Google Scholar
[17]
Potts, C.N. and Van Wassenhove, L. N., A decomposition algorithm for the single machine total tardiness problem. Operations Research Letters, 1982, 1, 177-181.
DOI: 10.1016/0167-6377(82)90035-9
Google Scholar
[18]
Chu, C., A branch-bound algorithm to minimize total tardiness with different release dates. Naval Research Logistics, 1992, 39, 265-283.
DOI: 10.1002/1520-6750(199203)39:2<265::aid-nav3220390209>3.0.co;2-l
Google Scholar
[19]
Fisher, M.L. (1976): A Dual Algorithm for the One-Machine Scheduling Problem, Mathematical Programming 11 pp.229-251.
DOI: 10.1007/bf01580393
Google Scholar
[20]
Schrage, L.E. and K. R. Baker (1978): Dynamic Programming Solution of Sequencing Problems with Precedence Constrains, Operations Research 26 pp.444-449.
DOI: 10.1287/opre.26.3.444
Google Scholar
[21]
Szwarc, W. and S. Mukhopadhyay (1996): Decomposition of the Single Machine Total Tardiness Problem, Operations Research Letters 19 pp.243-245.
DOI: 10.1016/s0167-6377(96)00031-4
Google Scholar
[22]
Della Croce, F., R. Tadei, P. Baracco and A. Grosso(1998): A New Decomposition Approach for the Single Machine Total Tardiness Scheduling Problem, Journal of the Operational Research Society 49 pp.1101-1106.
DOI: 10.1057/palgrave.jors.2600624
Google Scholar
[23]
Wilkerson, L. J, and Irwin, J.D. (1971): An Improved Algorithm for Scheduling Independent Tasks, AIIE Transactions 3 pp.239-245.
Google Scholar
[24]
Fry, T. D., L. Vicens, K. Macleod and S. Fernandez (1989): A heuristic Solution Procedure to Minimize T on a Single Machine, Journal of the Operational Research Society 40 pp.293-297.
DOI: 10.1057/jors.1989.39
Google Scholar
[25]
Hosenback, J. E. and R.M. Russell(1992): A heuristic Algorithm for Sequencing on One Machine to Minimize Total Tardiness, Journal of the Operational Research Society 43 pp.53-62.
DOI: 10.1057/jors.1992.6
Google Scholar
[26]
Panwalkar, S. S., M. L. Smith and C. P. Koulamas (1993): A heuristic for the Single Machine Tardiness Problem, European Journal of Operational Research 70 pp.304-310.
DOI: 10.1016/0377-2217(93)90241-e
Google Scholar
[27]
Wang Dingwei, the intelligent optimization methods [M], higher education press, (2007).
Google Scholar
[28]
R. Panneerselvam, Simple heuristic to minimize total tardiness in a single machine scheduling problem.
Google Scholar