[1]
M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid, Low-frequency range[J], J Acoust Soc Amer. 28(1956a) 168-178.
DOI: 10.1121/1.1908239
Google Scholar
[2]
M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid, Higher-frequency range[J], J Acoust Soe Amer. 28(1956b) 179-191.
DOI: 10.1121/1.1908241
Google Scholar
[3]
N. Akbar, J. Dovorkin, A. Nur, Relating P-wave attenuation to permeability[J], Geophysics. 58(1993) 20-29.
DOI: 10.1190/1.1443348
Google Scholar
[4]
J.O. Parra, The transve rsely isotropic poroelastic wave equation including the Biot and the squirt mechanisms: Theory and application [J], Geophysics. 62(1997) 309-318.
DOI: 10.1190/1.1444132
Google Scholar
[5]
J. O. Parra, Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy [J], Geophysics. 65(2000) 202-210.
DOI: 10.1190/1.1444711
Google Scholar
[6]
D.H. Yang, Z.J. Zhang, Effects of the Biot and the squirt- flow coupling interaction on anisotropic elastic waves [J], Chinese Sci Bull. 45(2000) 2130-2138.
DOI: 10.1007/bf02886316
Google Scholar
[7]
Mamadou Sanou Diallo), Erwin Appel. Acoustic wave propagation in saturated porous media: reformulation of the BiotrSquirt flow theory. Journal of Applied Geophysics, 2000, (44): 313–325.
DOI: 10.1016/s0926-9851(00)00009-4
Google Scholar
[8]
Fornberg B. High-order finite differences and pseudo-spectral method on staggered grids[J]. SIAM J Numer Anal, 1990, 7(4): 904~918.
DOI: 10.1137/0727052
Google Scholar
[9]
Ö zdenvar T, McMechan G. Cause and reduction of numerical artifacts in pseudo-spectral wave-field extrapolation[J]. GeophysJ. Int, 1996, 126(3): 819-828.
DOI: 10.1111/j.1365-246x.1996.tb04705.x
Google Scholar