Numerical Simulation and Experimental Study on Light Scattering by Biological Cells with Discrete Dipole Approximation

Article Preview

Abstract:

An experimental apparatus for the analysis of biological cells light scattering in liquid suspensions has been presented. Characterization is based on the scattering of a monochromatic laser beam by particles [which can be inorganic, organic, or biological (such as animal cells and bacteria)] and on the strong relation between the light-scattering pattern and the morphology and refractive index of the particles. In order to study light scattering in biological cells close to the actual situation, we focus on non-spherical particles in the cell-culture medium. Finally, we demonstrate the light scattering results of bovine kidney cells suspended in the cell-culture medium, and compares then with the simulated results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

105-109

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] van de Hulst H.C. Light scattering by small particles [M]. New York: John Wiley & and Sons Inc., 1957 Also Dover Publications Inc., New York, (1981).

Google Scholar

[2] Bohren CF, Huffman DR. Absorption and scattering of light by small particles [M]. New York: John Wiley & Sons, (1983).

Google Scholar

[3] Mishchenko M. I, Travis L. D, Lacis A.A. Scattering, absorption, and emission of light by small particles [M]. Cambridge: Cambridge University Press, (2002).

Google Scholar

[4] F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics [M]. Springer, (2003).

DOI: 10.1007/978-3-540-37414-5_9

Google Scholar

[5] Hovenier J. W, van der Mee CVM, Domke H. of polarized light in planetary atmospheres: basic concepts and practical methods [M]. Dordrecht: Kluwer/Springer, (2004).

DOI: 10.1007/978-1-4020-2856-4

Google Scholar

[6] Wilson, Jeremy D; Foster, Thomas H, Mie theory interpretations of light scattering from intact cells [J]. Optics Letters, 2005: 30(18): 2442-2444.

DOI: 10.1364/ol.30.002442

Google Scholar

[7] Xu, Min, Superposition rule for light scattering by a composite particle [J]. Optics Letters, 2006: 31(22): 3223-3225.

DOI: 10.1364/ol.31.003223

Google Scholar

[8] Justin D. Keener, Chalut, Kevin J, Pyhtila, John W, Wax, Adam, Application of Mie theory to determine the structure of spheroidal scatterers in biological materials [J]. Optics Letters, 2007: 32(10): 1326-1328.

DOI: 10.1364/ol.32.001326

Google Scholar

[9] S. Sudo,Y. Miyasaka.K. Nemoto etc., Detection of small particles in fluid flow using a self-mixing laser [J]. Applied Optics, 2007: 15(13): 8135-8145.

DOI: 10.1364/oe.15.008135

Google Scholar

[10] Ke Si, Wei Gong, Sheppard, Colin J R, Model for light scattering in biological tissue and cells based on random rough nonspherical particles [J]. Applied Optics, 2009: 48(6): 1153-1157.

DOI: 10.1364/ao.48.001153

Google Scholar

[11] Mohamed A. Naser and Michael S. Patterson. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties [J]. Biomedical Optics Express, 2010: 1(2): 512-523.

DOI: 10.1364/boe.1.000512

Google Scholar

[12] Akihisa Nonoyama, Alicia Garcia-Lopez, etc., Hypochrmicity in red blood cells: an experimental and theoretical investigation [J]. Biomedical Optics Express, 2011: 2(8): 2126-2143.

DOI: 10.1364/boe.2.002126

Google Scholar

[13] Joonoh Lim, Huafeng Ding, etc., Born approximation model for light scattering by red blood cells [J]. Biomedical Optics Express, 2011: 2(10): 2784-2791.

DOI: 10.1364/boe.2.002784

Google Scholar

[14] M. Kahnert, Numerical methods in electromagnetic scattering theory [J]. J. Quant. Spectrosc. Radiat. Transfer, 2003: 79-80: 775–824.

DOI: 10.1016/s0022-4073(02)00321-7

Google Scholar

[15] A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles [M]. Null-Field Method with Discrete Sources: Theory and Programs. Springer, (2006).

DOI: 10.1016/b978-012219740-6/50006-x

Google Scholar

[16] T. Wriedt and J. Hellmers, New scattering information portal for the light–scattering community [J].J. Quant. Spectrosc. Radiat. Transfer., 2008: 109: 1536–1542.

DOI: 10.1016/j.jqsrt.2007.11.008

Google Scholar

[17] J. Hellmers and T. Wriedt, New approaches for a light scattering internet information portal and categorization schemes for light scattering software [J]. J. Quant. Spectrosc. Radiat. Transfer, 2009: 110: 1511–1517.

DOI: 10.1016/j.jqsrt.2009.01.023

Google Scholar

[18] T. Rother, Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations [M]. Springer, (2009).

DOI: 10.1007/978-3-642-00704-0

Google Scholar

[19] M. Kahnert, Electromagnetic scattering by nonspherical particles: recent advances [J]. J. Quant. Spectrosc. Radiat. Transfer, 2010: 111: 1788–1790.

DOI: 10.1016/j.jqsrt.2009.12.007

Google Scholar

[20] Bruce T. Draine, Piotr J. Flatau., Discrete-dipole approximation for scattering calculations [J]. J. Opt. Soc. Am. A, 1994: 11(4): 1491-1499.

DOI: 10.1364/josaa.11.001491

Google Scholar