A 2.5GHZ-2.7GHz Unsymmetrical Doherty Power Amplifier with Digital Predistortion for LTE-Advanced Applications

Article Preview

Abstract:

An unsymmetrical GaN based Doherty power amplifier (DPA) operating from 2.5GHz to 2.7GHz is presented in this paper. To achieve a good tradeoff among the output power, efficiency and bandwidth, the ladder-type multisection output matching networks are optimized for the carrier amplifier and the peaking amplifier, respectively. Measured with continuous wave (CW) signal, the broadband DPA provides more than 49dBm saturation power in the operating band. The drain efficiency is greater than 44% over 7dB back-off power. For a LTE-Advanced signal with 100MHz bandwidth, the drain efficiency is higher than 42% at an average output power of 41dBm, along with an adjacent channel leakage ratio (ACLR) of better than-49.9dBc after digital predistortion (DPD).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

546-550

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kim, J. Cha, I. Kim and B. Kim. Optimum operation of asymmetrical-cell-based linear doherty power amplfiers-uneven power drive and power matching[J]. IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp.1802-1809, May (2005).

DOI: 10.1109/tmtt.2005.847073

Google Scholar

[2] J. Moon, J. Kim, I. Kim, J. Kim, and B. Kim. A wideband envelope tracking Doherty amplifier forWiMAX systems[J]. IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, p.49–51, Jan. (2008).

DOI: 10.1109/lmwc.2007.912019

Google Scholar

[3] Y. S. Lee, M. W. Lee, and Y. H. Jeong. Unequal-cells-based GaN HEMT Doherty amplifier with an extended efficiency range[J]. IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, p.536–538, Aug. (2008).

DOI: 10.1109/lmwc.2008.2001015

Google Scholar

[4] M. Sarkeshi, O. B. Leong, and A. van Roermund. A novel Doherty power amplifier for enhanced load modulation and higher bandwidth[C]. IEEEMTT-S Int. Microw. Symp. Dig., 2008, p.733–766.

DOI: 10.1109/mwsym.2008.4632944

Google Scholar

[5] J. H. Qureshi, N. Li, W. C. E. Neo, F. van Rijs, I. Blednov, and L. C. N. de Vreede. A wideband 20W LDMOS Doherty power amplifier[C]. IEEE MTT-S Int. Microw. Symp. Dig., May 2010, p.1504–1386.

DOI: 10.1109/mwsym.2010.5515172

Google Scholar

[6] G. Sun and R. H. Jansen. Broadband Doherty power amplifier via real frequency technique[J]. IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, p.99–111, Jan. (2012).

DOI: 10.1109/tmtt.2011.2175237

Google Scholar

[7] K. Bathich, A. Z. Markos, and G. Boeck. Frequency response analysis and bandwidth extension of the Doherty amplifier[J]. IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, p.934–944, Apr. (2011).

DOI: 10.1109/tmtt.2010.2098040

Google Scholar

[8] P. Colantonio, F. Giannini, and E. Limiti. High Efficiency RF and Mi crowave Solid State Power Amplifiers. ser. Microwave and Optical Engineering. New York: Wiley, (2009).

DOI: 10.1002/9780470746547

Google Scholar

[9] Y. S. C. Cripps. RF Power Amplifier for Wireless Communications 2nd ed. Nordwood, MA: Artech House, (2006).

Google Scholar