Structures and Properties of BiFeO3 Thin Films on Pt(111)/Ti/SiO2/Si Substrates Prepared by Pulsed-Laser Deposition under Various Oxygen Partial Pressures

Article Preview

Abstract:

Ferroelectric BiFeO3 (BFO) thin films were prepared on Pt (111)/Ti/SiO2/Si substrates by pulsed-laser deposition under various oxygen partial pressures (PO2). The effects of PO2 on the phase, orientation, surface morphology, and ferroelectric properties of the films were investigated, particularly in regard to relationships between structure and properties. It was found that the crystallographic orientation and surface morphology of the BFO thin films strongly depended on PO2. Films prepared at PO2=10 Pa had a high degree of (111) orientation and densely packed grains. A maximum of twice the remanent polarization for the BFO thin film was 68 μC/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

714-718

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, J.B. Neaton, H. Zheng, et al: Science Vol. 299 (2003), p.1719.

Google Scholar

[2] J.F. Li, J.L. Wang, M. Wuttig, R. Ramesh, et al: Appl. Phys. Lett. Vol. 84 (2004), p.5261.

Google Scholar

[3] G.L. Yuan and A. Uedono: Appl. Phys. Lett. Vol. 94 (2009), p.132905.

Google Scholar

[4] J. Zhu, W.B. Luo and Y.R. Li: Appl. Surf. Sci. Vol. 255 (2008), p.3466.

Google Scholar

[5] J.G. Wu and J. Wang: Acta Mater. Vol. 58 (2010), p.1688.

Google Scholar

[6] S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan and D.G. Schlom: Appl. Phys. Lett. Vol. 87 (2005), p.102903.

DOI: 10.1063/1.2041830

Google Scholar

[7] F. Tyholdt, H. Fjellvåg, A.E. Gunnæs and A. Olsen: J. Appl. Phys. Vol. 102 (2007), p.074108.

Google Scholar

[8] S.K. Singh, Y.K. Kim, H. Funakubo and H. Ishiwara: Appl. Phys. Lett. Vol. 88 (2006), p.162904.

Google Scholar

[9] C.C. Lee and J.M. Wu: Appl. Surf. Sci. Vol. 253 (2007), p.7069.

Google Scholar

[10] K.Y. Yun, M. Noda and M. Okuyama: Appl. Phys. Lett. Vol. 83 (2003), p.3981.

Google Scholar

[11] K.Y. Yun, M. Noda and M. Okuyama: J. Appl. Phys. Vol. 96 (2004), p.3399.

Google Scholar

[12] S.K. Pradhan, J. Das, P.P. Rout, et al: J. Phys. Chem. Solids Vol. 71 (2010), p.1557.

Google Scholar

[13] K.G. Yang and Y.L. Zhang: J. Appl. Phys. Vol. 107 (2010), p.124109.

Google Scholar

[14] W. Zhang, L. Li and X.M. Chen: J. Appl. Phys. Vol. 08 (2010), p.044104.

Google Scholar

[15] J.J. Wang C.B. Wang, Q. Shen and L.M. Zhang: J. Alloy. Comp. Vol. 512 (2010), p.140.

Google Scholar

[16] M.S. Kartavtseva, O.Y. Gorbenko, A.R. Kaul, T.V. Murzina and A. Barthelemy: Thin Solid Films Vol. 515 (2007), p.6416.

DOI: 10.1016/j.tsf.2006.11.133

Google Scholar

[17] W.B. Luo, J. Zhu, Y.R. Li, X.P. Wang, D. Zhao, J. Xiong and Y. Zhang: Appl. Phys. Lett. Vol. 91 (2007), p.082501.

Google Scholar

[18] D. Hong, S.W. Yu and J.R. Cheng: Curr. Appl. Phys. Vol. 11 (2011), p. s255.

Google Scholar

[19] S.R. Shannigrahi, A. Huang, D. Tripathy and A.O. Adeyeye: J. Magne. Magn. Mater. Vol. 320 (2008), p.2215.

Google Scholar