[1]
A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker. Logic Circuits with Carbon Nanotube Transistors. [J]. Science, 2001 (294) 1317-1320.
DOI: 10.1126/science.1065824
Google Scholar
[2]
M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang. Room-Temperature Ultraviolet Nanowire Nanolasers. [J]. Science, 2001 (292) 1897-1899.
DOI: 10.1126/science.1060367
Google Scholar
[3]
Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, and C.J. Youn. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. [J]. Appl. Phys. Lett., 2006 (88) 241108-242208-3.
DOI: 10.1063/1.2210452
Google Scholar
[4]
D.W. Wang, P.C. Chang, W.Y. Tseng, and J.G. Liu. ZnO nanowire field-effect transistor and oxygen sensing property. [J]. Appl. Phys. Lett., 2004 (85) 5923-5925.
DOI: 10.1063/1.1836870
Google Scholar
[5]
M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang. Nanowire dye-sensitized solar cells. [J]. Nat. Matter., 2005 (4) 455-459.
DOI: 10.1038/nmat1387
Google Scholar
[6]
J.Y. Park, D.E. Song, and S.S. Kim. An approach to fabricating chemical sensors based on ZnO nanorod arrays. [J]. Nanotechnology, 2008 (19) 105503 (5pp).
DOI: 10.1088/0957-4484/19/10/105503
Google Scholar
[7]
D.J. Bergman and M.I. Stockman. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. [J]. Phys. Rev. Lett., 2003 (90) 027402-027405.
DOI: 10.1103/physrevlett.90.027402
Google Scholar
[8]
R.F. Oulton, V.J. Sorger, T. Zentgraf, and X. Zhang. Plasmon lasers at deep subwavelength scale. [J]. Nature, 2009 (61) 629-632.
DOI: 10.1038/nature08364
Google Scholar
[9]
M.J. Zheng, L.D. Zhang, and G.H. Li. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. [J]. Chem. Phys. Lett., 2002 (363) 123-128.
DOI: 10.1016/s0009-2614(02)01106-5
Google Scholar
[10]
J. Wang and L. Gao. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. [J]. Solid state Commun., 2004 (132) 269-271.
DOI: 10.1016/j.ssc.2004.07.052
Google Scholar
[11]
W.I. Park, D.H. Kim, S.W. Jung, and G.C. Yi. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. [J]. Appl. Phys. Lett., 2002 (80) 4232-4234.
DOI: 10.1063/1.1482800
Google Scholar
[12]
T.J. Kuo, C.N. Lin, C.L. Kuo, and M.H. Huang. Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts. [J]. Chem. Mater., 2007 (19) 5143-5147.
DOI: 10.1021/cm071568a
Google Scholar
[13]
A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y.B. Hahn. Growth of Highly c-Axis-Oriented ZnO Nanorods on ZnO/Glass Substrate: Growth Mechanism, Structural, and Optical Properties. [J]. J. Phys. Chem. C, 2009 (113) 14715-14720.
DOI: 10.1021/jp9045098
Google Scholar
[14]
S. Li, X.Z. Zhang, B. Yan, and T. Yu. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method. [J]. Nanotechnology, 2009 (20) 495604(9pp).
DOI: 10.1088/0957-4484/20/49/495604
Google Scholar
[15]
V. Stikant and D.R. Clarke. On the optical band gap of zinc oxide. [J]. J. Appl. Phys., 1998 (83) 5447-5451.
Google Scholar
[16]
Y. Li, G.W. Meng, and L.D. Zhang. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. [J]. Appl. Phys. Lett., 2000 (76) 2011-(2013).
DOI: 10.1063/1.126238
Google Scholar
[17]
L. Dai, X.L. Chen, W.J. Zhang, T. Zhou and B.Q. Hu. Growth and luminescence characterization of large-scale zinc oxide nanowires. [J]. J. Phys.: Condens. Matter., 2003 (15) 2221-2226.
DOI: 10.1088/0953-8984/15/13/308
Google Scholar
[18]
Y.J. Fang, Y.W. Wang, Y.T. Wan, Z.L. Wang, and J. Sha. Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation. [J]. J. Phys. Chem. C, 2010 (114) 12469-12476.
DOI: 10.1021/jp103711m
Google Scholar
[19]
A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn. Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders. [J]. J. Cryst. Growth. 2005 (277) 471-478.
DOI: 10.1016/j.jcrysgro.2005.02.006
Google Scholar