Effect of Growth Conditions on Morphology and Photoluminescence Properties of ZnO Nanowires Fabricated by Thermal Evaporation without a Metal Catalyst

Article Preview

Abstract:

We demonstrate that single crystalline ZnO nanowires with large length/diameter ratio are successfully grown on Si, glass, and Si with ZnO seed layer via simple thermal vapor deposition, without introducing any catalyst or additive. In this work, we study impact of growth conditions such as growth temperature, substrates, and ZnO seed layer on morphology and photoluminescence properties of ZnO nanowires, in terms of systematic characterizations. The investigations show that the growth temperatures have substantial effect on the morphology of ZnO nanowires, while substrates have low impact. And 700 °C is believed to be the optimized growth temperature among the series of temperatures. Moreover, ZnO seed layer plays an important role in the uniformity and reproducibility of ZnO nanowires growth. PL measurements for the ZnO nanowires exhibit two emission bands including a UV emission and a blue emission, respectively. Finally, the growth behavior of the ZnO nanowires is discussed based on the VS growth mechanism. Our resluts have made a positive progress toward improving control of the morphology of ZnO nanowires.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 760-762)

Pages:

816-820

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker. Logic Circuits with Carbon Nanotube Transistors. [J]. Science, 2001 (294) 1317-1320.

DOI: 10.1126/science.1065824

Google Scholar

[2] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang. Room-Temperature Ultraviolet Nanowire Nanolasers. [J]. Science, 2001 (292) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[3] Y. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, B.J. Kim, Y.S. Park, and C.J. Youn. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. [J]. Appl. Phys. Lett., 2006 (88) 241108-242208-3.

DOI: 10.1063/1.2210452

Google Scholar

[4] D.W. Wang, P.C. Chang, W.Y. Tseng, and J.G. Liu. ZnO nanowire field-effect transistor and oxygen sensing property. [J]. Appl. Phys. Lett., 2004 (85) 5923-5925.

DOI: 10.1063/1.1836870

Google Scholar

[5] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang. Nanowire dye-sensitized solar cells. [J]. Nat. Matter., 2005 (4) 455-459.

DOI: 10.1038/nmat1387

Google Scholar

[6] J.Y. Park, D.E. Song, and S.S. Kim. An approach to fabricating chemical sensors based on ZnO nanorod arrays. [J]. Nanotechnology, 2008 (19) 105503 (5pp).

DOI: 10.1088/0957-4484/19/10/105503

Google Scholar

[7] D.J. Bergman and M.I. Stockman. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. [J]. Phys. Rev. Lett., 2003 (90) 027402-027405.

DOI: 10.1103/physrevlett.90.027402

Google Scholar

[8] R.F. Oulton, V.J. Sorger, T. Zentgraf, and X. Zhang. Plasmon lasers at deep subwavelength scale. [J]. Nature, 2009 (61) 629-632.

DOI: 10.1038/nature08364

Google Scholar

[9] M.J. Zheng, L.D. Zhang, and G.H. Li. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. [J]. Chem. Phys. Lett., 2002 (363) 123-128.

DOI: 10.1016/s0009-2614(02)01106-5

Google Scholar

[10] J. Wang and L. Gao. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. [J]. Solid state Commun., 2004 (132) 269-271.

DOI: 10.1016/j.ssc.2004.07.052

Google Scholar

[11] W.I. Park, D.H. Kim, S.W. Jung, and G.C. Yi. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. [J]. Appl. Phys. Lett., 2002 (80) 4232-4234.

DOI: 10.1063/1.1482800

Google Scholar

[12] T.J. Kuo, C.N. Lin, C.L. Kuo, and M.H. Huang. Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts. [J]. Chem. Mater., 2007 (19) 5143-5147.

DOI: 10.1021/cm071568a

Google Scholar

[13] A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, and Y.B. Hahn. Growth of Highly c-Axis-Oriented ZnO Nanorods on ZnO/Glass Substrate: Growth Mechanism, Structural, and Optical Properties. [J]. J. Phys. Chem. C, 2009 (113) 14715-14720.

DOI: 10.1021/jp9045098

Google Scholar

[14] S. Li, X.Z. Zhang, B. Yan, and T. Yu. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method. [J]. Nanotechnology, 2009 (20) 495604(9pp).

DOI: 10.1088/0957-4484/20/49/495604

Google Scholar

[15] V. Stikant and D.R. Clarke. On the optical band gap of zinc oxide. [J]. J. Appl. Phys., 1998 (83) 5447-5451.

Google Scholar

[16] Y. Li, G.W. Meng, and L.D. Zhang. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. [J]. Appl. Phys. Lett., 2000 (76) 2011-(2013).

DOI: 10.1063/1.126238

Google Scholar

[17] L. Dai, X.L. Chen, W.J. Zhang, T. Zhou and B.Q. Hu. Growth and luminescence characterization of large-scale zinc oxide nanowires. [J]. J. Phys.: Condens. Matter., 2003 (15) 2221-2226.

DOI: 10.1088/0953-8984/15/13/308

Google Scholar

[18] Y.J. Fang, Y.W. Wang, Y.T. Wan, Z.L. Wang, and J. Sha. Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation. [J]. J. Phys. Chem. C, 2010 (114) 12469-12476.

DOI: 10.1021/jp103711m

Google Scholar

[19] A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn. Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders. [J]. J. Cryst. Growth. 2005 (277) 471-478.

DOI: 10.1016/j.jcrysgro.2005.02.006

Google Scholar