Ferromagnetism in N-Doped In2O3 Films Prepared by Thermal Oxidation

Article Preview

Abstract:

Two series of N-doped In2O3 films were prepared by annealing the sputtered InN films in air at different temperatures and for different time. The corresponding structural and magnetic properties are studied. An apparent transformation from the wurtzite InN to the cubic bixbyite In2O3 is observed with increasing the annealing temperature. Room temperature d0 ferromagnetism is detected, which is found to be closely related with the annealing conditions. We think that the ferromagnetism is derived from the N-doping which substitute the positions of the oxygen atoms in the In2O3 lattice, and an indirect ferromagnetic coupling can be established between the doped N atoms via the hybridized O 2p and In 5p/4d orbitals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-106

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000).

Google Scholar

[2] K. Ueda, H. Tabata and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

Google Scholar

[3] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Ahuja, J. M. O. Guillen, B. Johansson and G. A. Gehring, Nat. Mater. 2, 673 (2003).

Google Scholar

[4] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyaw, S. Koshihara and H. Koinuma, Science 291, 854 (2001).

DOI: 10.1126/science.1056186

Google Scholar

[5] S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. DasSarma, H. D. Drew, R. L. Greene and T. Venkatesan, Phys. Rev. Lett. 91, 077205 (2003).

DOI: 10.1063/1.1610796

Google Scholar

[6] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).

Google Scholar

[7] N. H. Hong, J. Sakai, N. T. Huong and Virginie Brizé, Appl. Phys. Lett. 87, 102505 (2005).

Google Scholar

[8] O. D. Jayakumar, I. K. Gopalakrishnan, S. K. Kulshreshtha, Amita Gupta, K. V. Rao, D. V. Louzguine-Luzgin, A. Inoue, P. A. Glans, J. H. Guo, K. Samanta, M. K. Singh and R. S. Katiyar, Appl. Phys. Lett. 91, 052504 (2007).

DOI: 10.1063/1.2757589

Google Scholar

[9] Z. H. Zhang, Xuefeng Wang, J. B. Xu, S. Muller, C. Ronning and Quan Li, Nature Nanotechnology 4, 523 (2009).

Google Scholar

[10] S. Colis, A. Bouaine, R. Moubah, G. Schmerber, C. Ulhaq-Bouillet, A. Dinia, L. Dahéron, J. Petersen and C. Becker, J. Appl. Phys. 108, 053910 (2010).

DOI: 10.1063/1.3481026

Google Scholar

[11] M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Nature 430, 630 (2004).

Google Scholar

[12] R. K. Singhal, Sudhish Kumar, P. Kumari,  Y. T. Xing and E. Saitovitch, Appl. Phys. Lett. 98, 092510 (2011).

Google Scholar

[13] N. H. Hong, J. -H. Song, A. T. Raghavender,  T. Asaeda and M. Kurisu, Appl. Phys. Lett. 99, 052505 (2011).

DOI: 10.1063/1.3617439

Google Scholar

[14] B. Gu, N. Bulut, T. Ziman, S. Maekawa, Phys. Rev. B 79, 024407 (2009).

Google Scholar

[15] N. H. Hong, J. Sakai, N. Poirot, V. Brizé , Phys. Rev. B 73, 132404 (2006).

Google Scholar

[16] C. Sudakar, A. Dixit, S. Kumar, M.B. Sahana, G. Lawes, R. Naik, V.M. Naik, Scripta Materialia 62, 63 (2010).

DOI: 10.1016/j.scriptamat.2009.10.001

Google Scholar

[17] Raghava P. Panguluri, P. Kharel, C. Sudakar,  R. Naik, R. Suryanarayanan, V. M. Naik, A. G. Petukhov, B. Nadgorny and G. Lawes, Phys. Rev. B 79, 165208 (2009).

DOI: 10.1103/physrevb.79.165208

Google Scholar

[18] L. X. Guan, J. G. Tao, C. H. A. Huan,  J. L. Kuo and L. Wang, Appl. Phys. Lett. 95, 012509 (2009).

Google Scholar

[19] J. T-Thienprasert, J. Nukeaw, A. Sungthong,  S. Porntheeraphat, S. Singkarat, D. Onkaw, S. Rujirawat and S. Limpijumnong, Appl. Phys. Lett. 93, 051903 (2008).

DOI: 10.1063/1.2965802

Google Scholar