[1]
J.T. Chen, F.C. Wong, Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition. J. Sound Vib., 217 (1998) 75–95.
DOI: 10.1006/jsvi.1998.1743
Google Scholar
[2]
A.S. Wood, G.E. Tupholme, M.I.H. Bhatti and P.J. Heggs, Steady-state heat transfer through extended plane surfaces, Int. Commun. Heat Mass Transfer, 22 (1995) 99–109.
DOI: 10.1016/0735-1933(94)00056-q
Google Scholar
[3]
T. Zhanlav, V. Ulziibayar, The Best Finite-Difference Scheme for the Helmholtz Equation, American Journal of Computational Mathematics, 2 (2012) 207-212.
DOI: 10.4236/ajcm.2012.23026
Google Scholar
[4]
S. Amini, S.M. Kirkup, Solution of Helmholtz equation in the exterior domain by elementary boundary integral methods. J. Comput. Phys., 118 (1995) 208-221.
DOI: 10.1006/jcph.1995.1093
Google Scholar
[5]
H.W. Zhang, M.X. LI and W.G. Li, Techniques for boundary conditions in point allocation meshless methods, Journal of Dalian University of Technology, 50 (2010) 614-618.
Google Scholar
[6]
J. Haslinger, E Neittaanmaki, On different finite element methods for approximating the gradient of the solution to the Helmholtz equation. Comput. Methods Appl. Mech. Engrg., 42 (1984) 131-148.
DOI: 10.1016/0045-7825(84)90022-7
Google Scholar
[7]
S. Yalçinbaş, M. Sezer, The approximate solution of the high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials. Applied Mathematics and Computation, 112 (2000) 821-834.
DOI: 10.1016/s0096-3003(99)00059-4
Google Scholar
[8]
Q.S. Wang, J.D. Lai, Taylor collocation Solution and Error Analysis for 2-Dimensional Volterra-Fredholm Integral Equations. Journal of Wuyi University (Natural Science Edition), 27 (2013) 1-5 (In Chinese).
Google Scholar