A Unified Approach of Object-Level Saliency Detection in Images and Videos

Article Preview

Abstract:

Object-level saliency detection is an important branch of visual saliency. In this paper, we propose a novel method which can conduct object-level saliency detection in both images and videos in a unified way. We employ a more effective spatial compactness assumption to measure saliency instead of the popular contrast assumption. In addition, we present a combination framework which integrates multiple saliency maps generated in different feature maps. The proposed algorithm can automatically select saliency maps of high quality according to the quality evaluation score we define. The experimental results demonstrate that the proposed method outperforms all state-of-the-art methods on both of the datasets of still images and video sequences.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

1401-1405

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Itti, C. Koch, and E. Niebur, A model of saliencybased visual attention for rapid scene analysis, TPAMI, vol. 20, no. 11, pp.1254-1259, (1998).

DOI: 10.1109/34.730558

Google Scholar

[2] N.D.B. Bruce and J.K. Tsotsos, Saliency based on information maximization, in NIPS, (2005).

Google Scholar

[3] U. Rutishauser, D. Walther, C. Koch, and P. Perona, Is bottom-up attention useful for object recognition?, in CVPR, (2004).

DOI: 10.1109/cvpr.2004.1315142

Google Scholar

[4] A. Santella, M. Agrawala, D. DeCarlo, D. Salesin, and M. Cohen, Gaze-based interaction for semi-automatic photo cropping, in Proceedings of the SIGCHI conference on Human Factors, (2006).

DOI: 10.1145/1124772.1124886

Google Scholar

[5] H. Wu, Y.S. Wang, K.C. Feng, T.T. Wong, T.Y. Lee, and P.A. Heng, Resizing by symmetry-summarization, ACM Trans. Graph., vol. 29, no. 6, p.159: 1–159: 10, (2010).

DOI: 10.1145/1882261.1866185

Google Scholar

[6] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, TPAMI, vol. 24, no. 5, pp.603-619, (2002).

DOI: 10.1109/34.1000236

Google Scholar

[7] R. Achanta, S. Hemami, F. Estrada, and Sabine Ssstrunk, Frequency-tuned salient region detection, in CVPR, (2009).

DOI: 10.1109/cvpr.2009.5206596

Google Scholar

[8] Esa Rahtu, Juho Kannala, Mikko Salo, and Janne Heikkila, Segmenting salient objects from images and videos, in ECCV, (2010).

DOI: 10.1007/978-3-642-15555-0_27

Google Scholar

[9] Stas Goferman, Lihi Zelnik-Manor, and Ayellet Tal, Context-aware saliency detection, in CVPR, (2010).

DOI: 10.1109/cvpr.2010.5539929

Google Scholar

[10] T. Liu, Z.J. Yuan, J. Sun, J.D. Wang, N.N. Zheng, X.O. Tang, and H.Y. Shum, Learning to detect a salient object, TPAMI, vol. 33, no. 2, pp.353-367, (2011).

DOI: 10.1109/tpami.2010.70

Google Scholar

[11] M.M. Cheng, G.X. Zhang, N.J. Mitra, X. L Huang, and S. M Hu, Global contrast based salient region detection, in CVPR, (2011).

DOI: 10.1109/cvpr.2011.5995344

Google Scholar

[12] Yulin Xie, Huchuan Lu, and Ming-Hsuan Yang, Bayesian saliency via low and mid level cues, TIP, vol. 22 , no. 2, pp.1689-1698, (2012).

DOI: 10.1109/tip.2012.2216276

Google Scholar

[13] F. Perazzi, P. Krahenbul, Y. Pritch and A. Hornung, Saliency filters: contrast based filtering for salient region detection, in: CVPR, (2012).

DOI: 10.1109/cvpr.2012.6247743

Google Scholar

[14] X. H Shen and Y. Wu, A unified approach to salient object detection via low rank matrix recovery, in: CVPR, (2012).

DOI: 10.1109/cvpr.2012.6247758

Google Scholar

[15] Ali Borji, Dicky N. Sihite, and Laurent Itti, Salient Object Detection: A Benchmark, in: ECCV, (2012).

Google Scholar

[16] Benjamin W. Tatler, The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions, Journal of Vision, vol. 7, no. 14, p.1 – 17, (2007).

DOI: 10.1167/7.14.4

Google Scholar

[17] David Tsai, Matthew Flagg and James M. Rehg, Motion coherent tracking with multi-label MRF optimization, in BMVC, (2010).

DOI: 10.5244/c.24.56

Google Scholar

[18] C. Liu, Beyond pixels: exploring new representations and applications for motion analysis, Doctoral Thesis, Massachusetts Institute of Technology, (2009).

Google Scholar