Study on Principle of Spacecraft Surface Charge and Discharge

Article Preview

Abstract:

Spacecraft surface charge and discharge is an important reason for the failure of the spacecraft in the space environment. This paper introduces the principle of spacecraft surface charging and discharging , from the spacecraft surface charging discharging phenomenon found to the harm of charge and discharge, elaborated the spacecraft surface charging protection method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

217-221

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ervin Beloni and Edward L. Dreizin. Ignition of Different Size Al Particles in a Powder Bed by Electro-Static Discharge (ESD) Stimulation. 45th AIAA, (2009).

DOI: 10.2514/6.2009-5079

Google Scholar

[2] M. J. Mandell, V. A. Davist and B. M. Gardner. Charge Control of Geosynchronous Spacecraft Using Field Effect Emitters. 45th AIAA, (2007).

DOI: 10.2514/6.2007-284

Google Scholar

[3] Hirokazu Masui, Tomoki Kitamura, Teppei Okumura. Laboratory Test Campaign for ISO Standardization of Solar Array ESD Test Methods. 45th AIAA, (2007).

DOI: 10.2514/6.2007-277

Google Scholar

[4] G.B. Hillard and D.C. Ferguson. LEO Spacecraft Charging Design Guidelines: A Proposed NASA Standard . IEEE Trans on Magn. 42nd AIAA, (2004).

DOI: 10.2514/6.2004-1259

Google Scholar

[5] Dale C. Ferguson. New NASA See LEO Spacecrafe Charging design Guidelines – How to survive in LEO Rather than GEO.

Google Scholar

[6] Orjubin G, Richalot E, Mengue S, et al. On the FEM modal approach for a reverberation chamber analysis[J]. IEEE Trans Electromagn Compat, 2007, 49(1): 76-85.

DOI: 10.1109/temc.2006.888187

Google Scholar

[7] Lerosey G, Rosny J. Scattering cross section measurement in reverberation chamber[J]. IEEE Trans Electromagn Compat, 2007, 49(2): 280-284.

DOI: 10.1109/temc.2007.893332

Google Scholar

[8] Zhao H P, Shen Z X. Efficient modeling of three-dimensional reverberation chambers using hybrid discrete singular convolution-method of moments[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 2943-2953.

DOI: 10.1109/tap.2011.2158966

Google Scholar

[9] Xiao K, Pommerenke D J, Drewniak J L. A three-dimensional FDTD subgridding algorithm with separated temporal and spatial interfaces and related stability analysis[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(7): 1981-(1990).

DOI: 10.1109/tap.2007.900180

Google Scholar

[10] Orjubin G, Petit F, Richalot E, et al. Cavity losses modeling using lossless FDTD method[J]. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(2): 429-431.

DOI: 10.1109/temc.2006.873854

Google Scholar

[11] Waldschmidt G, Taflove A. Three-dimensional cad-based mesh generator for the dey–mittra conformal FDTD algorithm[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(7): 1658-1664.

DOI: 10.1109/tap.2004.831334

Google Scholar

[12] Sypek P, Dziekonski A, Mrozowski M. How to render FDTD computations more effective using a graphics accelerator [J]. IEEE Transactions on Magnetics, 2009, 45(3): 1324-1327.

DOI: 10.1109/tmag.2009.2012614

Google Scholar

[13] Teixeira F L. Time-domain finite-difference and finite-element methods for maxwell equations in complex media[J]. IEEE Trans Antennas Propag, 2008, 55(8): 2150-2166.

DOI: 10.1109/tap.2008.926767

Google Scholar

[14] Waldschmidt G, Taflove A. Three-dimensional cad-based mesh generator for the dey–mittra conformal FDTD algorithm[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(7): 1658-1664.

DOI: 10.1109/tap.2004.831334

Google Scholar

[15] Orjubin G, Petit F, Richalot E, et al. Cavity losses modeling using lossless FDTD method[J]. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(2): 429-431.

DOI: 10.1109/temc.2006.873854

Google Scholar

[16] Kobidze G. Implementation of collocated surface impedance boundary conditions in FDTD[J]. IEEE Transactions on Antennas and Propagation, 2010, 57(7): 2394-2403.

DOI: 10.1109/tap.2010.2048859

Google Scholar

[17] Clegg J, Marvin A C, Dawson J F, et al. Optimization of stirrer designs in a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 824-832.

DOI: 10.1109/temc.2005.860561

Google Scholar