[1]
Ervin Beloni and Edward L. Dreizin. Ignition of Different Size Al Particles in a Powder Bed by Electro-Static Discharge (ESD) Stimulation. 45th AIAA, (2009).
DOI: 10.2514/6.2009-5079
Google Scholar
[2]
M. J. Mandell, V. A. Davist and B. M. Gardner. Charge Control of Geosynchronous Spacecraft Using Field Effect Emitters. 45th AIAA, (2007).
DOI: 10.2514/6.2007-284
Google Scholar
[3]
Hirokazu Masui, Tomoki Kitamura, Teppei Okumura. Laboratory Test Campaign for ISO Standardization of Solar Array ESD Test Methods. 45th AIAA, (2007).
DOI: 10.2514/6.2007-277
Google Scholar
[4]
G.B. Hillard and D.C. Ferguson. LEO Spacecraft Charging Design Guidelines: A Proposed NASA Standard . IEEE Trans on Magn. 42nd AIAA, (2004).
DOI: 10.2514/6.2004-1259
Google Scholar
[5]
Dale C. Ferguson. New NASA See LEO Spacecrafe Charging design Guidelines – How to survive in LEO Rather than GEO.
Google Scholar
[6]
Orjubin G, Richalot E, Mengue S, et al. On the FEM modal approach for a reverberation chamber analysis[J]. IEEE Trans Electromagn Compat, 2007, 49(1): 76-85.
DOI: 10.1109/temc.2006.888187
Google Scholar
[7]
Lerosey G, Rosny J. Scattering cross section measurement in reverberation chamber[J]. IEEE Trans Electromagn Compat, 2007, 49(2): 280-284.
DOI: 10.1109/temc.2007.893332
Google Scholar
[8]
Zhao H P, Shen Z X. Efficient modeling of three-dimensional reverberation chambers using hybrid discrete singular convolution-method of moments[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 2943-2953.
DOI: 10.1109/tap.2011.2158966
Google Scholar
[9]
Xiao K, Pommerenke D J, Drewniak J L. A three-dimensional FDTD subgridding algorithm with separated temporal and spatial interfaces and related stability analysis[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(7): 1981-(1990).
DOI: 10.1109/tap.2007.900180
Google Scholar
[10]
Orjubin G, Petit F, Richalot E, et al. Cavity losses modeling using lossless FDTD method[J]. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(2): 429-431.
DOI: 10.1109/temc.2006.873854
Google Scholar
[11]
Waldschmidt G, Taflove A. Three-dimensional cad-based mesh generator for the dey–mittra conformal FDTD algorithm[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(7): 1658-1664.
DOI: 10.1109/tap.2004.831334
Google Scholar
[12]
Sypek P, Dziekonski A, Mrozowski M. How to render FDTD computations more effective using a graphics accelerator [J]. IEEE Transactions on Magnetics, 2009, 45(3): 1324-1327.
DOI: 10.1109/tmag.2009.2012614
Google Scholar
[13]
Teixeira F L. Time-domain finite-difference and finite-element methods for maxwell equations in complex media[J]. IEEE Trans Antennas Propag, 2008, 55(8): 2150-2166.
DOI: 10.1109/tap.2008.926767
Google Scholar
[14]
Waldschmidt G, Taflove A. Three-dimensional cad-based mesh generator for the dey–mittra conformal FDTD algorithm[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(7): 1658-1664.
DOI: 10.1109/tap.2004.831334
Google Scholar
[15]
Orjubin G, Petit F, Richalot E, et al. Cavity losses modeling using lossless FDTD method[J]. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(2): 429-431.
DOI: 10.1109/temc.2006.873854
Google Scholar
[16]
Kobidze G. Implementation of collocated surface impedance boundary conditions in FDTD[J]. IEEE Transactions on Antennas and Propagation, 2010, 57(7): 2394-2403.
DOI: 10.1109/tap.2010.2048859
Google Scholar
[17]
Clegg J, Marvin A C, Dawson J F, et al. Optimization of stirrer designs in a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 824-832.
DOI: 10.1109/temc.2005.860561
Google Scholar