Modeling and Analysis of a Circular Wave Energy Conversion System

Article Preview

Abstract:

A circular wave energy converter (WEC) is put forward to solve the cable loosing problem of the non-circular structure WEC model. The circular device mainly consists of a double acting ratchet, cable, a driving wheel, four fixed pulleys, a counterweight, a gear box and a generator. In this modified model, the weight of counterweight is smaller than that of the float. The model can obtain a bigger maximum and average driving torque when the float rises, so that the utilization rate of wave energy is improved. Moreover, the influence of the float shape is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

2280-2283

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Drew B., Plummer A. R, and Sahinkaya M. N. A review of wave energy converter technology[J], Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 223 n. 8, 2009, pp.887-902.

DOI: 10.1243/09576509jpe782

Google Scholar

[2] Duckers L. Wave energy[M]. Renewable Energy: Power for a Sustainable Future. Oxford University Press, Oxford, (2004).

Google Scholar

[3] Hadano, K, Koirala, P, Nakano, K, and Ikegami, K. A Refined Model for Float Type Energy Conversion Device[C]. 17th Int Offshore and Polar Eng Conf, Lisbon, Portugal, ISOPE, 2007, p.421−427.

Google Scholar

[4] Falnes, J. A review of wave-energy extraction[J]. Marine Structures, vol. 20 n. 4, 2007, pp.185-201.

DOI: 10.1016/j.marstruc.2007.09.001

Google Scholar

[5] Wu, G. X, and R. Eatock Taylor. The second order diffraction force on a horizontal cylinder in finite water depth[J]. Applied Ocean Research, vol. 13 n. 3, 1990, pp.106-111.

DOI: 10.1016/s0141-1187(05)80001-x

Google Scholar

[6] Falnes, J. Ocean waves and oscillating systems[M], Cambridge University Press, (2002).

Google Scholar

[7] Yuan Junting, and Zhou Yingqi. Classification of offshore fish cages and their performances[J]. Journal of Shanghai Fisheries University, vol. 15 n. 3, 2006, pp.350-358. (In Chinese).

Google Scholar

[8] Cheng Youliang, Dang Yue, and Wu Yingjie. Status and Trends of the Power Generation from Wave[J]. Applied Energy Technology, n. 12, 2009, pp.26-30. (In Chinese).

Google Scholar

[9] Franquelo, L. G, Rodriguez, J, Leon, J. I, Kouro, S, Portillo, R., and Prats, M. A. The age of multilevel converters arrives[J]. IEEE Industrial Electronics Magazine, 2008, vol. 2 n. 2, pp.28-39.

DOI: 10.1109/mie.2008.923519

Google Scholar

[10] Grady, W. M, Samotyj, M. J, and Noyola, A. H. Survey of active power line conditioning methodologies[J]. IEEE Transactions on Power Delivery, 1990, vol. 5 n. 3, pp.1536-1542.

DOI: 10.1109/61.57998

Google Scholar

[11] Hadano, K , Hashida, M , and Sato, M. An Attempt to make High Performance Wave Energy System[C]. Proc 12th Int Offshore and Polar Eng Conf, pp.556-561, (2002).

Google Scholar

[12] Muetze, A and Vining, J. Ocean Wave Energy Conversion, University of Wisconsin, Madison, (2005).

Google Scholar

[13] Henderson, R. Design, simulation, and testing of a novel hydraulic power rake-off system for the Pelamis wave energy converter[J]. Renewable energy, 2006, vol. 31 n. 2, pp.271-283.

DOI: 10.1016/j.renene.2005.08.021

Google Scholar

[14] Koirala, P, Hadano, K, Nakano, K, and Taneura, K. Dynamics model of movable body-type wave energy converter considering two-dimensional motions of the float[J]. JSCE Journal B, 2009, vol. 65 n. 3, pp.179-189.

DOI: 10.2208/jscejb.65.179

Google Scholar