Tunable Matching Network Using MEMS Switches

Article Preview

Abstract:

This paper presents a novel approach in order to construct low-loss reconfigurable impedance matching networks and tuners using MEMS series-contact switches and periodic defected-ground-structures (DGSs) implemented on coplanar waveguide (CPW) transmission lines. The application of DGSs results in an improved insertion loss and power handling capability compared to the conventional RF MEMS impedance tuning networks. The proposed structure consists of 12 DGSs and RF MEMS series-contact switches. The tunable matching network was fabricated on a silicon substrate and is only 1.4×̃˾̈˰̽̽˰̹̾˰̵̹̓͊˾˰̸̵̤˰̵̵̴̱̽̓͂ͅ˰̼̿̓̓˰̶̿˰̸̵̈́˰̵͇̻̾̈́̿͂˰̸̵͇̾˰̵̴̓ͅ˰̈́̿˰̸̱̳̽̈́˰̱˰́̀˰Ω˰̴̼̱̿˰̈́̿˰̅̀˰Ω˰̶͂̿m 5GHz up to 40 GHz is only 0.8 dB. The results show that the tuner can achieve a broadband impedance match for a wide variety of loads that are either purely resistive or that have a large reactance as well.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

2575-2578

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Vähä-Heikkilä, M. Rintamäki, J. Varis, and J. Tuovinen, Vol. 12( 2004), pp.15-18.

Google Scholar

[2] T. Vähä-Heikkilä, M. Rintamäki, J. Varis, J. Tuovinen, International Conference on Electromagnetics in Advanced Applications, (2005), pp.122-125.

Google Scholar

[3] V. S. Möttönen, J. Mallat, and A. V. Räisänen, Proceedings of 34th European Microwave Conference, Amsterdam, Netherlands, (2004), pp.921-924.

Google Scholar

[4] G. M. Rebeiz: RF MEMS Theory, Design, and Technology, John Wiley & Sons, New York, (2003).

Google Scholar

[5] V. M. Lubecke, W. R. McGrath, and D. B. Rutledge, IEEE Microwave Guided Wave Letters., Vol. 3, (1993), p.441–443.

Google Scholar

[6] H. -T. Kim, S. Jung, K. Kang, J. -H. Park, Y. -K. Kim, and Y. Kwon, IEEE Transactions on Microwave Theory and Techniques, Vol. 49(2001), pp.2394-2400.

DOI: 10.1109/22.971626

Google Scholar

[7] T. Vähä-Heikkilä, and G. M. Rebeiz, IEEE MTT-S International Microwave Symposium digest, Forth Worth, TX, USA, (2004), pp.717-721.

Google Scholar

[8] T. Vähä-Heikkilä, J. Varis, J. Tuovinen, G. M. Rebeiz, IEEE Microwave and Wireless Components Letters, Vol. 15(2005), pp.205-207.

DOI: 10.1109/lmwc.2005.845690

Google Scholar

[9] T. Vähä-Heikkilä, J. Varis, J. Tuovinen, G. M. Rebeiz, Proceedings of European Microwave Conference, Amsterdam, Netherlands, (2004), pp.1301-1304.

Google Scholar

[10] T. Vähä-Heikkilä, J. Varis, J. Tuovinen, and G. M. Rebeiz, IEEE MTT-S Int. Microwave Symposium, Long Beach, CA, (2005), pp.136-139.

Google Scholar

[11] C. -W. Baek, S. Song, C. Cheon, Y. -K. Kim, Y. Kwon, IEEE MTT-S International Microwave Symposium Digest, Phoenix, AZ, (2001), pp.211-214.

Google Scholar

[12] T. Vähä-Heikkilä, J. Varis, J. Tuovinen, and G. M. Rebeiz, IEEE MTT-S Int. Microwave Symp. digest, Forth Worth, TX, USA, (2004), pp.729-732.

Google Scholar

[13] T. Vähä-Heikkilä, G. M. Rebeiz, Int. J. of RF and Microwave Computer-Aided Engineering, Vol. 14(2004), pp.356-372.

DOI: 10.1002/mmce.20021

Google Scholar

[14] M. Kantanen, M. Lahdes, T. Vähä-Heikkilä, J. Tuovinen, IEEE Transactions on Microwave Theory and Techniques, Vol. 51(2003), pp.1489-1495.

DOI: 10.1109/tmtt.2003.810129

Google Scholar

[15] T. Vähä-Heikkilä, M. Lahdes, M. Kantanen, J. Tuovinen: IEEE Trans. on Microwave Theory and Techniques, Vol. 51(2003), pp.1621-1628.

DOI: 10.1109/tmtt.2003.812554

Google Scholar

[16] M. Ylönen, T. Vähä-Heikkilä, H. Kattelus, Amorphous Metal Alloy Based MEMS for RF Applications, conference, Barcelona, Spain, Sept. ( 2005).

DOI: 10.1016/j.sna.2006.05.033

Google Scholar