Interfacial Properties for MEA and MEA-Water Mixtures

Article Preview

Abstract:

The perturbed-chain statistical associating fluid theory (PC-SAFT) and density-gradient theory (DGT) were used to construct an equation of state (EOS) for the bulk and interfacial properties of monoethanolamine (MEA) and its aqueous solutions. The molecular parameters and influence parameter were regressed by fitting the experimental data of phase equilibria and surface tensions. With the molecular parameters and influence parameter as input, the surface tensions of MEA aqueous solutions were correlated satisfactorily.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

3166-3169

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nahicenovic N; John A. CO2 reduction and removal: measures for the next century. Energy, 1991, 16: 1347-1377.

DOI: 10.1016/0360-5442(91)90007-9

Google Scholar

[2] Kralj AK, Glavic P. CO2 separation from purge gas and flue gas in the methanol process, using NLP model optimization. Ind Eng Chem Res, 2007, 46: 6953-6962.

DOI: 10.1021/ie0702173

Google Scholar

[3] Shen KP, Li MH. Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. J Chem Eng Data, 1992, 37: 96-100.

DOI: 10.1021/je00005a025

Google Scholar

[4] Kundu M, Bandyopadhyay SS. Solubility of CO2 in water + diethanolamine + N-methyldiethanolamine. Fluid Phase Equilib, 2006, 248: 158-167.

DOI: 10.1016/j.fluid.2006.08.001

Google Scholar

[5] Barreau A, Blanchon le Bouhelec E, Habchi Tounsi KN, Mougin P, Lecomte F. Absorption of H2S and CO2 in alkanolamine aqueous solution: experimental data and modelling with the electrolyte-NRTL model. Oil & Gas Sci Tech, 2006, 61: 345-361.

DOI: 10.2516/ogst:2006038a

Google Scholar

[6] Vazquez G, Alvarez E, Navaza J M , Rendo R , Romero E. Surface tension of binary mixtures of water + monoethanolamine and water + 2-amino-2- methyl-1-propanol and tertiary mixtures of these amines with water from 25 to 50℃ [J]. J.Chem.Eng.Data 1997, 42 (1), 57-59.

DOI: 10.1021/je960238w

Google Scholar

[7] Smith, B. D.; Srivastava, R. Thermodynamic data for pure components, Elsevier, Amsterdam, (1986).

Google Scholar

[8] Venkat A, Kumar G, Kundu M. Density and Surface Tension of Aqueous Solutions of (2-(Methylamino)-ethanol +2-Amino-2-methyl- 1-propanol) and (2-(Methylamino)-ethanol + N-Methyl-diethanolamine) from (298. 15 to 323. 15) K. J. Chem. Eng. Data, 2010, 55 (11), 4580-4585.

DOI: 10.1021/je1002626

Google Scholar

[9] Gross, J.; Sadowski, G. Application of the perturbed-chain SAFT equation of state to associating systems. Ind. Eng. Chem. Res. 2002, 41, 5510-5515.

DOI: 10.1021/ie010954d

Google Scholar

[10] Fu D. Investigation of surface tensions for pure associating fluids by PC-SAFT combined with density-gradient theory. Ind. Eng. Chem. Res. 2007, 46(22), 7378-7383.

DOI: 10.1021/ie070906e

Google Scholar

[11] Cahn, J. W., Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 1958, 28, 258-267.

DOI: 10.1063/1.1744102

Google Scholar

[12] Kim I, Svendsen H F, Børresen E L. Ebulliometric Determination of Vapor-Liquid Equilibria for Pure Water, Monoethanolamine, N-Methyldiethanolamine, 3-(Methylamino)-propylamine, and Their Binary and Ternary Solutions. J. Chem. Eng. Data, 2008, 53(11), 2521-2531.

DOI: 10.1021/je800290k

Google Scholar