Effect of Hydrothermal Reaction Conditions on the Sizes and Morphologies of ZnO Nanorods

Article Preview

Abstract:

The influence factors of hydrothermal treatment on the formation process of ZnO nanorods are investigated involving with hydrothermal temperature, time and precursor concentration. The as-obtained products were characterized by Scanning Electron microscope (SEM) and X-ray diffraction (XRD), respectively. XRD result indicates that the obtained ZnO nanorods are high-quality single crystals. SEM results indicate that both the diameter and the length of ZnO nanorods increase with increasing the hydrothermal time and temperature. The precursor concentration prominently determines the morphologies of ZnO nanostructure from initial particle morphology to rod-like, and to final slice-like morphology.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

3170-3175

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. P. T. Shubra: Journal of Physics D: Applied Physics Vol. 40 (2007), p.6312.

Google Scholar

[2] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner: Prog: Mater. Sci Vol. 50 (2005), p.293.

Google Scholar

[3] S. Xu and Z. L. Wang: Nano research. Vol. 4 (2011), p.1013.

Google Scholar

[4] Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu and Y. Zhu: Inorg. Chem. Vol. 46 (2007), p.6675.

Google Scholar

[5] M. Sessolo and H. J. Bolink: Adv. Mater. Vol. 23 (2011), p.1829.

Google Scholar

[6] J. Yi, J. M. Lee and W. I. Park: Sensors and Actuators B: Chemical. Vol. 155 (2011), p.264.

Google Scholar

[7] M. N. Rumyantseva, V. V. Kovalenko, A. M. Gaskov, T. Pagnier, D. Machon, J. Arbiol and J. R. Morante: Sensors and Actuators B: Chemical. Vol. 109 (2005), p.64.

DOI: 10.1016/j.snb.2005.03.017

Google Scholar

[8] Q. Zhang, C. S. Dandeneau, X. Zhou and G. Cao: Adv. Mater. Vol. 21 (2009), p.4087.

Google Scholar

[9] J. Ge, J. Wang, H. Zhang, X. Wang, Q. Peng and Y. Li: Sensors and Actuators B: Chemical. Vol. 113 (2006), p.937.

Google Scholar

[10] G. Zhu, S. Gu, S. Zhu, S. Huang, R. Gu, J. Ye and Y. Zheng: J. Cryst. Growth. Vol. 349 (2012), p.6.

Google Scholar

[11] R. C. Scott, K. D. Leedy, B. Bayraktaroglu, D. C. Look and Y. Zhang: Appl. Phys. Lett. Vol. 97 (2010), p.72113.

Google Scholar

[12] Y. Tsai, N. Wang and C. Tsai: Thin Solid Films. Vol. 518 (2010), p.4955.

Google Scholar

[13] J. J. Richardson and F. F. Lange: J. Mater. Chem. Vol. 21 (2011), p.1859.

Google Scholar

[14] C. Zhang: J. Phys. Chem. Solids. Vol. 71 (2010), p.364.

Google Scholar

[15] L. Z. Pei, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, C. G. Fan and Q. F. Zhang: Physica E: Low-dimensional Systems and Nanostructures. Vol. 42 (2010), p.1333.

DOI: 10.1016/j.physe.2009.08.026

Google Scholar

[16] X. Yan, Z. Li, R. Chen and W. Gao: Cryst. Growth Des. Vol. 8 (2008), p.2406.

Google Scholar

[17] Y. Tao, M. Fu, A. Zhao, D. He and Y. Wang: J. Alloy. Compd. Vol. 489 (2010), p.99.

Google Scholar

[18] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park and A. Schulte: Physica B: Condensed Matter. Vol. 403 (2008), p.3713.

DOI: 10.1016/j.physb.2008.06.020

Google Scholar

[19] C. M. Shin, J. H. Heo, J. H. Park, T. M. Lee, H. Ryu, B. C. Shin, W. J. Lee and H. K. Kim: Physica E: Low-dimensional Systems and Nanostructures. Vol. 43 (2010), p.54.

DOI: 10.1016/j.physe.2010.06.013

Google Scholar

[20] S. Chen and J. Wu: Acta Mater. Vol. 59 (2011), p.841.

Google Scholar