[1]
L. Caccetta, B. Qu, G.L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl. 48 (2011) 45-58.
DOI: 10.1007/s10589-009-9242-9
Google Scholar
[2]
N.J. Higham, Estimating the matrix p-norm, Numer. Math. 62 (1992) 539-55.
Google Scholar
[3]
S.L. Hu, Z.H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010) 417-424.
Google Scholar
[4]
S.L. Hu, Z.H. Huang, J. -S. Chen, Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems, J. Comput. Appl. Math. 230 (2009) 69-82.
DOI: 10.1016/j.cam.2008.10.056
Google Scholar
[5]
S.L. Hu, Z.H. Huang, Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, J. Comput. Appl. Math. 235 (2011) 1490-1501.
DOI: 10.1016/j.cam.2010.08.036
Google Scholar
[6]
Z.H. Huang, Y. Zhang, W. Wu, A smoothing-type algorithm for solving system of inequalities, J. Comput. Appl. Math. 220 (2008) 355-363.
Google Scholar
[7]
R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, (1985).
Google Scholar
[8]
O.L. Mangasarian, Absolute value equation solution via concave minmization, Optim. Lett. 1 (2007) 3-8.
Google Scholar
[9]
O.L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett. 3 (2009) 101-108.
DOI: 10.1007/s11590-008-0094-5
Google Scholar
[10]
O.L. Mangasarian, R.R. Meyer, Absolute value equations, Linear Algebra Appl. 419 (2006) 359- -367.
DOI: 10.1016/j.laa.2006.05.004
Google Scholar
[11]
O.A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl. 44 (2009) 363-372.
DOI: 10.1007/s10589-007-9158-1
Google Scholar
[12]
L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res. 18 (1993) 227-244.
DOI: 10.1287/moor.18.1.227
Google Scholar
[13]
L. Qi, D. Sun, G.L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math. Program. 87 (2000) 1-35.
DOI: 10.1007/s101079900127
Google Scholar
[14]
J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Linear and Multilinear Algebra, 52 (2004) 421-426.
DOI: 10.1080/0308108042000220686
Google Scholar
[15]
C. Zhang, Q.J. Wei, Global and finite convergence of a generalized Newton method for absolute value equations, J. Optim. Theory Appl. 143 (2009) 391-403.
DOI: 10.1007/s10957-009-9557-9
Google Scholar