A Smoothing Newton Method for Solving Absolute Value Equations

Article Preview

Abstract:

In this paper, we reformulate the system of absolute value equations as afamily of parameterized smooth equations and propose a smoothing Newton method tosolve this class of problems. we prove that the method is globally and locally quadraticallyconvergent under suitable assumptions. The preliminary numerical results demonstratethat the method is effective.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

703-708

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Caccetta, B. Qu, G.L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl. 48 (2011) 45-58.

DOI: 10.1007/s10589-009-9242-9

Google Scholar

[2] N.J. Higham, Estimating the matrix p-norm, Numer. Math. 62 (1992) 539-55.

Google Scholar

[3] S.L. Hu, Z.H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010) 417-424.

Google Scholar

[4] S.L. Hu, Z.H. Huang, J. -S. Chen, Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems, J. Comput. Appl. Math. 230 (2009) 69-82.

DOI: 10.1016/j.cam.2008.10.056

Google Scholar

[5] S.L. Hu, Z.H. Huang, Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, J. Comput. Appl. Math. 235 (2011) 1490-1501.

DOI: 10.1016/j.cam.2010.08.036

Google Scholar

[6] Z.H. Huang, Y. Zhang, W. Wu, A smoothing-type algorithm for solving system of inequalities, J. Comput. Appl. Math. 220 (2008) 355-363.

Google Scholar

[7] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, (1985).

Google Scholar

[8] O.L. Mangasarian, Absolute value equation solution via concave minmization, Optim. Lett. 1 (2007) 3-8.

Google Scholar

[9] O.L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett. 3 (2009) 101-108.

DOI: 10.1007/s11590-008-0094-5

Google Scholar

[10] O.L. Mangasarian, R.R. Meyer, Absolute value equations, Linear Algebra Appl. 419 (2006) 359- -367.

DOI: 10.1016/j.laa.2006.05.004

Google Scholar

[11] O.A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl. 44 (2009) 363-372.

DOI: 10.1007/s10589-007-9158-1

Google Scholar

[12] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res. 18 (1993) 227-244.

DOI: 10.1287/moor.18.1.227

Google Scholar

[13] L. Qi, D. Sun, G.L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math. Program. 87 (2000) 1-35.

DOI: 10.1007/s101079900127

Google Scholar

[14] J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Linear and Multilinear Algebra, 52 (2004) 421-426.

DOI: 10.1080/0308108042000220686

Google Scholar

[15] C. Zhang, Q.J. Wei, Global and finite convergence of a generalized Newton method for absolute value equations, J. Optim. Theory Appl. 143 (2009) 391-403.

DOI: 10.1007/s10957-009-9557-9

Google Scholar