Existence of High Energy Solutions for Kirchhoff-Type Equations

Article Preview

Abstract:

In this paper, by applying the fountain theorems, we study the existence of infinitely many high energy solutions for the nonlinear kirchhoff nonlocal equations under the Ambrosetti-Rabinowitz type growth conditions or no Ambrosetti-Rabinowitz type growth conditions, infinitely many high energy solutions are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

739-743

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Willem, Minimax Theorems, Birkhäuser, Boston, (1996).

Google Scholar

[2] X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal, 70, 1407-1414 (2009).

DOI: 10.1016/j.na.2008.02.021

Google Scholar

[3] X. He, W. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Sin. Acta. Math. Appl, 26 (2010), 387-394.

DOI: 10.1007/s10255-010-0005-2

Google Scholar

[4] A. Mao, Z. Zhang. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal, 70(3), 1275-1287 (2009).

DOI: 10.1016/j.na.2008.02.011

Google Scholar

[5] K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ, 221(1), 246-255 (2006).

DOI: 10.1016/j.jde.2005.03.006

Google Scholar

[6] Z. Zhang, K. Perera. Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 (2) , 456-463 (2006).

DOI: 10.1016/j.jmaa.2005.06.102

Google Scholar

[7] Nguyen Lam, G. Lu, Elliptic equations and systems with subcritical and critical exponential growth with-out the ambrosetti-rabinowitz condition, J. Geom. Anal. (2012).

DOI: 10.1007/s12220-012-9330-4

Google Scholar

[8] Cheng, B, Wu, X, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71, 4883 –4892 (2009).

DOI: 10.1016/j.na.2009.03.065

Google Scholar

[9] Alves, C. O, Corrëa, F.J.S. A, Ma, T. F, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49, 85–93 (2005).

DOI: 10.1016/j.camwa.2005.01.008

Google Scholar

[10] W . Zou, M. Schechter, Critical point theory and its applications, Springer, New York. (2006).

Google Scholar