[1]
M. Willem, Minimax Theorems, Birkhäuser, Boston, (1996).
Google Scholar
[2]
X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal, 70, 1407-1414 (2009).
DOI: 10.1016/j.na.2008.02.021
Google Scholar
[3]
X. He, W. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Sin. Acta. Math. Appl, 26 (2010), 387-394.
DOI: 10.1007/s10255-010-0005-2
Google Scholar
[4]
A. Mao, Z. Zhang. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal, 70(3), 1275-1287 (2009).
DOI: 10.1016/j.na.2008.02.011
Google Scholar
[5]
K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ, 221(1), 246-255 (2006).
DOI: 10.1016/j.jde.2005.03.006
Google Scholar
[6]
Z. Zhang, K. Perera. Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 (2) , 456-463 (2006).
DOI: 10.1016/j.jmaa.2005.06.102
Google Scholar
[7]
Nguyen Lam, G. Lu, Elliptic equations and systems with subcritical and critical exponential growth with-out the ambrosetti-rabinowitz condition, J. Geom. Anal. (2012).
DOI: 10.1007/s12220-012-9330-4
Google Scholar
[8]
Cheng, B, Wu, X, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71, 4883 –4892 (2009).
DOI: 10.1016/j.na.2009.03.065
Google Scholar
[9]
Alves, C. O, Corrëa, F.J.S. A, Ma, T. F, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49, 85–93 (2005).
DOI: 10.1016/j.camwa.2005.01.008
Google Scholar
[10]
W . Zou, M. Schechter, Critical point theory and its applications, Springer, New York. (2006).
Google Scholar