The Lower Bound of Density Estimation for Biased Data in Sobolev Spaces

Article Preview

Abstract:

In this paper, we consider the density estimation problem from independent and identically distributed (i.i.d.) biased observations. We study the lower bound of convergence rates of density estimation over Sobolev spaces WrN(NN+) under the Lp risk by using Fanos lemma.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

744-748

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Efromovich, Nonparametric curve estimation. Methods, Theory, and Applications, Springer Series in Statistics, (1999).

Google Scholar

[2] G. Kerkyacharian, D. Picard. Density estimation in Besov spaces. Statist. Proab. Lett., 13 (1992 ) 15-24.

Google Scholar

[3] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard. Density estimation by wavelet thresholding. Ann. Statist., 24 (1996) 508-539.

DOI: 10.1214/aos/1032894451

Google Scholar

[4] H. Y. Wang. Convergence rates of density estimation in Besov spaces. Applied Mathematics, 2 (2011) 1258-1262.

DOI: 10.4236/am.2011.210175

Google Scholar

[5] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer-Verlag, Berlin, (2009).

Google Scholar

[6] S. Efromovich, Density estimation for biased data. The Annals of Statistics, 32 (2004) 1137-1161.

Google Scholar

[7] C. Chesnean. Wavelet block thresholding for density estimation in the presence of bias. Journal of the Korean Statistical Society, 39 (2010) 43-53.

DOI: 10.1016/j.jkss.2009.03.004

Google Scholar