A Novel Control Strategy for DVR to Improve Voltage Profile in Wind Farm

Article Preview

Abstract:

Power quality is one of major concerns in the present era. It has become important, especially, with the introduction of sophisticated devices, whose performance is very sensitive to the quality of power supply. To improve the power quality, custom power devices are used. The device considered in this work is DVR. This work presents a control strategy for a DVR to improve the stability in wind farms based on SCIG. The DVR controller is designed to work under unbalanced conditions, which allows overcoming most faults in the power grid. The proposed strategy is capable of balancing voltages at wind farm terminals obtaining several advantages. Firstly, negative-sequence currents are eliminated; thus, overheating, loss of performance, and decreasing of generator useful life are avoided. Secondly, by nullifying negative sequence voltages, 2ω pulsation in the mechanical torque is prevented, reducing high stress in the turbine mechanical system, especially in the gearbox. The power system, DVR converter, and controller were implemented in the Sim power Systems blockset of SIMULINK/MATLAB®.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

344-350

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Vittal, M. O'Malley, and A. Keane, A steady-state voltage stability analysis of power systems with high penetrations of wind, IEEE Trans. Power Syst., vol. 25, no. 1, p.433–442, Feb. (2010).

DOI: 10.1109/tpwrs.2009.2031491

Google Scholar

[2] S. Muyeen, R. Takahashi, T. Murata, and J. Tamura, A variable speed wind turbine control strategy to meet wind farm grid code requirements, IEEE Trans. Power Syst., vol. 25, no. 1, p.331–340, Feb. (2010).

DOI: 10.1109/tpwrs.2009.2030421

Google Scholar

[3] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, M. A. M. Prats, J. I. León, and N. Moreno-Alfonso, Powerelectronic systems for the grid integration of renewable energy sources: A survey, IEEE Trans. Ind. Electron., vol. 53, p.1002–1016, Jun. (2006).

DOI: 10.1109/tie.2006.878356

Google Scholar

[4] J. M. Mauricio, A. E. Leon, A. Gomez-Exposito, and J. A. Solsona, An electrical approach to mechanical effort reduction in wind energy conversion systems, IEEE Trans. Energy Convers., vol. 23, no. 4, p.1108–1110, Dec. (2008).

DOI: 10.1109/tec.2008.2001463

Google Scholar

[5] H. Gaztanaga, I. Etxeberria-Otadui, S. Bacha, and D. Roye, Fixed-speed wind farm operation improvement by using DVR devices, " in Proc. IEEE Int. Symp. Industr. Electr. (ISIE, 07), Jun. 2007, p.2679–2684.

DOI: 10.1109/isie.2007.4375031

Google Scholar

[6] I. Tamrakar, L. B. Shilpakar, B. G. Fernandes, and R. Nilsen, Voltage and frequency control of parallel operated synchronous generator and induction generator with STATCOM in micro hydro scheme, IET Gen., Transm., Distrib., vol. 1, p.743–750, Sep. (2007).

DOI: 10.1049/iet-gtd:20060385

Google Scholar

[7] H. Gaztanaga, I. Etxeberria-Otadui, D. Ocnasu, and S. Bacha, Real-time analysis of the transient response improvement of fixed-speed wind farms by using a reduced-scale STATCOM prototype, IEEE Trans. Power Syst., vol. 22, no. 2, p.658–666, May (2007).

DOI: 10.1109/tpwrs.2007.895153

Google Scholar

[8] H. Gaztanaga, I. Etxeberria-Otadui, S. Bacha, and D. Roye, Fixed speed wind farm operation improvement by using DVR devices, " in Proc. IEEE Int. Symp. Industr. Electr. (ISIE, 07), Jun. 2007, p.2679–2684.

DOI: 10.1109/isie.2007.4375031

Google Scholar

[9] X. I. Koutiva, T. D. Vrionis, N. A. Vovos, and G. B. Giannakopoulos, Optimal integration of an offshore wind farm to a weak AC grid, IEEE Trans. Power Del., vol. 21, no. 2, p.987–994, Apr. (2006).

DOI: 10.1109/tpwrd.2005.859275

Google Scholar

[10] W. Lu and B. T. Ooi, Multiterminal LVDC system for optimal acquisition of power in wind-farm using induction generators, IEEE Trans. Power Electron., vol. 17, p.558–563, Jul. (2002).

DOI: 10.1109/tpel.2002.800995

Google Scholar

[11] M. I. Marei, E. F. El-Saadany, and M. M. A. Salama, A new approach to control DVR based on symmetrical components estimation, IEEE Trans. Power Del., vol. 22, no. 4, p.2017–2024, Oct. (2007).

DOI: 10.1109/tpwrd.2007.905537

Google Scholar

[12] C. Zhan, A. Arulampalam, and N. Jenkins, Four-wire dynamic voltage restorer based on a three-dimensional voltage space vector pwm algorithm, IEEE Trans. Power Electron., vol. 18, p.1093–1102, Jul. (2003).

DOI: 10.1109/tpel.2003.813772

Google Scholar

[13] H. -S. Song, I. -W. Joo, and K. Nam, Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions, IEEE Trans. Ind. Electron., vol. 50, p.1238–1245, Dec. (2003).

DOI: 10.1109/tie.2003.819685

Google Scholar

[14] V. K. Ramachandaramurthy, A. Arulampalam, C. Fitzer, C. Zhan, M. Barnes, and N. Jenkins, Supervisory control of dynamic voltage restorers, Proc. Inst. Elect. Eng., Gen., Transm., Distrib., vol. 151, no. 4, p.509–516, Jul. (2004).

DOI: 10.1049/ip-gtd:20040506

Google Scholar

[15] Andres E. Leon, Marcelo F. Farias, Pedro E. Battaiotto, Jorge A. Solsona, Maris Ines Valla, Control Strategy of a DVR to Improve Stability in Wind Farms Using Squirrel- Cage Induction Generators, IEEE Trans. Power systems, vol. 26, no. 3, August (2011).

DOI: 10.1109/tpwrs.2010.2088141

Google Scholar