[1]
M. Jayalakshmi and K. Balasubramanian, Simple Capacitors to Supercapacitors - An Overview, International Journal of Electrochemical Science, Vol. 3, p.1196 – 1217, (2008).
Google Scholar
[2]
Xiaoxia Xiang, Enhui Liu, Zhengzheng Huang, Haijie Shen, Yingying Tian, Chengyi Xiao, Jingjing Yang and Zhaohui Mao, Preparation of activated carbon from polyaniline by zinc chloride activation as supercapacitor electrodes, J Solid state Electrochem., Vol. 15, p.2667–2674, (2011).
DOI: 10.1007/s10008-010-1258-7
Google Scholar
[3]
R. S. Hastak, P. Sivaraman, D. D. Potphode, K. Shashidhara and A. B. Samui, High temperature all solid state supercapacitor based on multi-walled carbon nanotubes and poly[2, 5 benzimidazole], J Solid State Electrochem., (2012).
DOI: 10.1007/s10008-012-1679-6
Google Scholar
[4]
Li JianLing, Gao Fei, Zhang YaKun, Kang FeiYu, Wang XinDong, Ye Feng and Yang Jun, Electropolymerization of Ni(salen) on carbon nanotube carrier as a capacitive material by pulse potentiostatic method, Sci China Chem., Vol. 55, No. 7, p.1338–1344, July (2012).
DOI: 10.1007/s11426-012-4585-y
Google Scholar
[5]
Hossein Farsi, Fereydoon Gobal and Zahra Barzgari, A study of hydrated nanostructured tungsten trioxide as an electroactive material for pseudocapacitors, Ionics, (2012).
DOI: 10.1007/s11581-012-0726-8
Google Scholar
[6]
Zhiyi Lu, Qiu Yang, Wei Zhu, Zheng Chang, Junfeng Liu, Xiaoming Sun, David G. Evans and Xue Duan, Hierarchical CoO@Ni–Co–O Supercapacitor Electrodes with Ultrahigh Specific Capacitance per Area, Nano Res., 5(5): p.369–378, (2012).
DOI: 10.1007/s12274-012-0217-2
Google Scholar
[7]
Shuangling Guo, Fang Wang, Hao Chen, He Ren, Rongshun Wang and Xiumei Pan, Preparation and performance of polyvinyl alcohol-based activated carbon as electrode material in both aqueous and organic electrolytes, Journal of Solid State Electrochemistry, (2012).
DOI: 10.1007/s10008-012-1779-3
Google Scholar
[8]
Y. N. Sudhakar, M. Selvakumar and D. Krishna Bhat, LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors, Ionics, (2012).
DOI: 10.1007/s11581-012-0745-5
Google Scholar
[9]
M. P. Karushev and A. M. Timonov, Adsorption-Electrochemical Modification of Nanoporous Carbon Materials by Nickel Complexes with Schiff Bases, Russian Journal of Applied Chemistry, Vol. 85, No. 6, p.914−920, (2012).
DOI: 10.1134/s1070427212050134
Google Scholar
[10]
Stefano Mezzavilla, Caterina Zanella, Parakkulam Ramaswamy , Claudio Della Volpe and Gian Domenico Soraru, Carbon xerogels as electrodes for supercapacitors. The influence of the catalyst concentration on the microstructure and on the electrochemical properties, J Mater Sci., (2012).
DOI: 10.1007/s10853-012-6662-1
Google Scholar
[11]
Saptarshi Dhibar, Sumanta Sahoo, C. K. Das, R. Singh, Investigations on copper chloride doped polyaniline composites as efficient electrode materials for supercapacitor applications, Journal of Materials Science: Materials in Electronics, (2012).
DOI: 10.1007/s10854-012-0800-z
Google Scholar
[12]
L. V. Morozova, T. I. Panova, V. P. Popov, I. N. Tsvetkova, and O. A. Shilova, Synthesis and Study of Oxide and Phosphor–Silicate Nanocomposites for the Creation of New-Generation Supercapacitors, Glass Physics and Chemistry, Vol. 38, No. 3, p.332–338, (2012).
DOI: 10.1134/s1087659612030121
Google Scholar
[13]
Kalimuthu Vijaya Sankar, D. Kalpana, Ramakrishnan Kalai Selvan, Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications, J Appl Electrochem., Vol. 42, p.463–470, (2012).
DOI: 10.1007/s10800-012-0424-2
Google Scholar
[14]
Rixiong Chen, Shuhui Yu, Rong Sun, Wenhu Yang and Yubao Zhao, KCl-assisted, chemically reduced graphene oxide for high-performance supercapacitor electrodes, Journal of Solid State Electrochemistry, (2012).
DOI: 10.1007/s10008-012-1796-2
Google Scholar
[15]
Xiwen Wang, Suqin Liu, Haiyan Wang, Feiyue Tu, Dong Fang and Yanhua Li, Facile and green synthesis of Co3O4nanoplates/graphene nanosheets composite for supercapacitor, J Solid State Electrochem., (2012).
DOI: 10.1007/s10008-012-1744-1
Google Scholar
[16]
Liang QingQin, Li YueMing and Li JingHong, Low temperature synthesis of NiO/Co3O4 composite nanosheets as high performance Li-ion battery anode materials, Chinese Science Bulletin, (2012).
DOI: 10.1007/s11434-012-5290-0
Google Scholar
[17]
Fang Jing, Cui Mu, Lu Hai, Zhang Zhi-an, Lai Yan-qing and Li Jie, Hybrid supercapacitor based on polyaniline doped with lithium salt and activated carbon electrodes, Journal of Central South University of Technology, Vol. 16, p.0434−0439, (2009).
DOI: 10.1007/s11771-009-0073-8
Google Scholar
[18]
Majid Beidaghi, Zhifeng Wang, Lin Gu and Chunlei Wang, Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes, J Solid State Electrochem., (2012).
DOI: 10.1007/s10008-012-1777-5
Google Scholar
[19]
Chongyong Ge, Zhaohui Hou, Binhong He, Fanyan Zeng, Jianguo Cao, Yiming Liu and Yafei Kuang, Three-dimensional flower-like nickel oxide supported on graphene sheets as electrode material for supercapacitors, J Sol-Gel Sci Technol., Vol. 63, p.146–152, (2012).
DOI: 10.1007/s10971-012-2778-7
Google Scholar
[20]
Wen ChunMing, Wen ZhiYu, You Zheng and Wang XiaoFeng3, Preparation and characterization of three-dimensional micro-electrode for micro-supercapacitor based on inductively coupled plasma reactive etching technology, Science China Technological Sciences, Vol. 55, No. 7, p.2013–2018, July (2012).
DOI: 10.1007/s11431-012-4869-7
Google Scholar