Investigation of the Beginning of Plastic Yielding and the Hardening Behaviour under Biaxial Tension

Article Preview

Abstract:

The main focus of the experimental observation deals with the investigation of the plasticyielding of DC06 and DP600 under biaxial tension in comparison to an identified material modelwith an isotropic hardening behaviour. The isotropic hardening law describes the hardeningbehaviour of the material by application and approximation of the flow curve. Prevalent hardeninglaws are proposed by Swift (1952) or Hockett and Sherby (1975) and lead to an expansion of theyield surface in the stress space. By reasons of good accordance in an earlier survey the givenmaterials are modeled by the yield criterion Yld2000-2d and the isotropic hardening law of Swift.In this case the yield loci at different experimental states of plastification are compared with theyield loci given from the isotropic expansion of the Yld2000-2d yield surface. Furthermore apossible approach for modelling the change of the yield criterion’s shape in the stress space duringplastification is shown. With respect to further investigations additional research work is neededincluding extended and complex hardening laws to describe the real material behaviour sufficiently.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-204

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Iadicola, T. Foecke, S.W. Banovic, Experimental observation of evolving yield loci in biaxially strained AA5754-O, Int. J. Plasticity 24 (2008) 2084-2101.

DOI: 10.1016/j.ijplas.2008.03.003

Google Scholar

[2] R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Science 193 (1948) 281-297.

DOI: 10.1098/rspa.1948.0045

Google Scholar

[3] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S. -H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets - part 1: theory, Int. J. Plasticity 19 (2003) 1297-1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[4] R. Hill, C. A theory of the plastic bulging of a metal diaphragm by lateral pressure, Philosophical Magazine Series 7 (1950) 42 1133-1142.

DOI: 10.1080/14786445008561154

Google Scholar

[5] A. Güner, A. Brosius, A.E. Tekkaya, Experimental and numerical investigation of the hydraulic bulge test for accurate flow curve determination, Int. Deep Drawing Research Group IDDRG (2009) 331-341.

Google Scholar

[6] O. Pawelski, Über das Stauchen von Hohlzylindern und seine Eignung zur Bestimmung der Formänderungsfestigkeit dünner Bleche, Archiv für Eisenhüttenwesen 38 (1967) 437-442.

DOI: 10.1002/srin.196704204

Google Scholar

[7] M.W. Parsons, K.J. Pascoe, Development of a biaxial fatigue testing rig, J. Strain Analysis for Engineering Design JSAED 10 (1975) 1-9.

DOI: 10.1243/03093247v101001

Google Scholar

[8] A. Makinde, L. Thibodeau, K.W. Neale, Development of an Apparatus of Biaxial Testing Using Cruciform Specimens, Proceeding of the SEM Spring Conference on Experimental Mechanics and Manufacturers 32 (1989) 138-144.

DOI: 10.1007/bf02324725

Google Scholar

[9] A. Hannon, P. Tiernan, A review of planar biaxial tensile test systems for sheet metal, J. Mater. Process. Technol. 198 (2008) 1-13.

DOI: 10.1016/j.jmatprotec.2007.10.015

Google Scholar

[10] M. Merklein, M. Biasutti, Development of a Biaxial Tensile Machine for Characterization of Sheet Metals, J. Mater. Process. Technol. 213 (2013) 939-946.

DOI: 10.1016/j.jmatprotec.2012.12.005

Google Scholar

[11] H.W. Swift, Plastic instability under plane stress, J. Mech. Phy. Solids 1 (1952) 1-18.

Google Scholar

[12] M. Merklein, S. Suttner, Evolution of yield loci for aluminum alloy AA6016 and deep drawing steel DC06 under the influence of non-linear strain paths, Key Eng. Mater. 549 (2013) 21-28.

DOI: 10.4028/www.scientific.net/kem.549.21

Google Scholar

[13] T. Kuwabara, A. van Bael, E. Iizuka, Measurement and analysis of the yield locus and work hardening characteristics of steel sheets with different r-vales, Acta Mater. 50 (2002) 3717-3729.

DOI: 10.1016/s1359-6454(02)00184-2

Google Scholar

[14] T. Kuwabara, Advances of Plasticity Experiments on Metal Sheets and Tubes and Their Applications to Constitutive Modeling, Numisheet A (2005) 20-39.

DOI: 10.1063/1.2011190

Google Scholar