Thermal Influences on Deep Drawing Process of Ferritic and Metastable Austenitic Stainless Steels

Article Preview

Abstract:

Sheet metal forming processes, in particular deep drawing processes, are highly influenced by occurrence of latent and friction heat. Especially when forming metastable austenitic stainless steels, strain-induced martensite formation is suppressed by higher temperatures and therefore influences the material behavior and so called TRIP-effect. This study gives an overview about thermal influences on the deep drawing forming process of metastable austenitic CrNi-steel 1.4301 in comparison with ferritic stainless steels such as 1.4016. Measurements on serial and evaluation tools were carried out to determine occurring temperatures within forming tools. Attention is paid to effects on tribological aspects such as behavior of lubricants at higher temperatures, influence of temperature development on the martensite formation, mechanical properties, forming limit curves as well as heat flow within the forming tools. Lubricants with different temperature stability were compared to each other with determination of friction coefficient in strip drawing tests. Martensite and temperature development during forming of material was measured in non-isothermal tensile tests approving a high dependency of martensite formation on temperature. Forming limit curves for temperatures determined from RT to 140°C for EN 1.4301 are showing high dependency of necking behavior especially under plain strain conditions. Determination of thermal contact conductance coefficients for process and tool relevant material combinations allows interpreting heat flow mechanisms in forming tools and improving forming process to higher robustness. Results of this paper can be used to individually set boundary conditions for thermo-mechanical coupled forming simulation of austenitic stainless steel and process layout of tool temperature control systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-228

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Farren, G. Taylor: Heat development during plastic extension of metals; in: Proceedings of the Royal Society of London A, 5 (1925), p.422–451

Google Scholar

[2] G. Taylor, H. Quinney: The latent energy remaining after cold working; in: Proceedings of the Royal Society of London A (1934), p.307–326

Google Scholar

[3] J. Talonen: Energetics of Plastic Deformation of Metastable Austenitic Stainless Steel; in: steel research international, 78 (2007), Heft 3, p.260–265

DOI: 10.1002/srin.200705889

Google Scholar

[4] A. Hänsel: Nichtisothermes Werkstoffmodell für FE-Simulation von Blechumformprozessen mit metastabilen austenitischen CrNi-Stählen; Dissertation, ETH Zürich, (1998)

Google Scholar

[5] R. Steinheimer, B. Engel: Influence of disipating energy on flow curves of austenitic stainless steel; in: The 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, p.709–716, Seoul, (2011)

DOI: 10.1063/1.3623676

Google Scholar

[6] R. Grueebler, P. Hora: Temperature dependent friction modeling for sheet metal forming; in: International Journal of Material Forming, 2 (2009), Heft S1, p.251–254

DOI: 10.1007/s12289-009-0548-z

Google Scholar

[7] J. Schulz, W. Holweger: Wechselwirkung von Additiven mit Metaloberflächen, Spinger-Verlag, Berlin Heidelberg New York, 2010, ISBN 978-3-8169-2921-5

Google Scholar

[8] M. Wünsch: Möglichkeiten und Grenzen von Schmierstoffen, Lüdenscheid, (2004)

Google Scholar

[9] T. Angel: Formation of martensite in austenitic stainless steel; in: Journal of the iron and steel institute, May (1954), p.165–174

Google Scholar

[10] G. Olsen; Cohen, M.: Kinetics of Strain-Induced Martensitic Nucleation; in: Metallurgical transaction A, Volume 6A (1975)

Google Scholar

[11] T. Byun; Hashimoto, N., et al.: Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels; in: Acta Materialia, 52 (2004) (2004), p.3889

DOI: 10.1016/j.actamat.2004.05.003

Google Scholar

[12] A. Frehn: Einfluss der Umformgeschwindigkeit und Temperatur auf das Verhalten von nichtrostenden, austentischen Stählen; Dissertation, RWTH Aachen, (2004)

Google Scholar

[13] H. Hallberg; Hakansson, P., et al.: A Constitutive Model for the Formation of Martensite in Austenitic Steels Under Large Strain Plasticity; in: International Journal of Plasticity, 2007 (2007), Heft 23(7), p.1213–1239

DOI: 10.1016/j.ijplas.2006.11.002

Google Scholar

[14] S. Galée; P. Pilvin: Deep drawing simulation of a metastable austenitic stainless steel using a two-phase model; in: Journal of materials processing technology, 210 (2010), p.835–843

DOI: 10.1016/j.jmatprotec.2010.01.008

Google Scholar

[15] B. Springub: Semi-analytische Betrachtung des Tiefziehens rotationssysmmetrischer Bauteile unter Berücksichtigung der Martensitevolution; Dissertation, Universität Hannover, (2006)

Google Scholar

[16] E. Schedin, J. Kajberg: Real behavior and FEA modeling of stainless steels; in: Proceedings of the FLC, Zurich 2006 (2006)

Google Scholar

[17] C. Tague; C. Martin: Sheet Formability and Performance of Metastable Austenitic Stainless Steels; in: steel research international, 79 (2008), Heft 6, p.423–432

DOI: 10.1002/srin.200806148

Google Scholar

[18] J. Krauer, P. Hora, et al.: Forming Limit Prediction of Metastable Materials with Temperature and Strain Induced Martensite Transformation; in: IDDRG 09, 2009 (2009)

DOI: 10.1063/1.2740983

Google Scholar

[19] S. Kulp: Herstellung von Blechformteilen aus Reintitanwerkstoffen und hochlegierten rostfreien Stählen; Dissertation, Uni Hannover, (2003)

Google Scholar

[20] A. Korhonen; Manninen, T., et al.: Forming and fracture limits of two metastable high strngth austenitic stainless steels; in: steel research international, special edition (2011), p.1084–1089

Google Scholar

[21] P. Groche; M. Engels: Analyse und Beeinflussung des Wärmehaushalts in der Aluminiumumformung; EFB-Bericht, Heft Nr. 337, (2011)

Google Scholar

[22] B. Hochholdinger; P. Hora, et al.: Simulation of the Press Hardening Process and Prediction of the Final Mechanical Material Properties; in: The 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, p.618–625, Seoul, (2011)

DOI: 10.1063/1.3623665

Google Scholar

[23] R. Abelson; M. Abdou: Experimental evaluation of the interface heat conductance between roughened beryllium and stainless steel surfaces; in: Journal of Nuclear Material (1996), p.847–851

DOI: 10.1016/s0022-3115(96)00241-3

Google Scholar

[24] M. Rosochowska; K. Chodnikiewicz, et al.: A new method of measuring thermal contact conductance; in: Journal of materials processing technology (2004), Heft 145, p.207–214

DOI: 10.1016/s0924-0136(03)00671-x

Google Scholar

[25] M. Alasti: Modellierung von Reibung und Wärmeübergängen in der FEM-Simulation von Warmmassivumformprozessen; Dissertation, Universität Hannover, (2008)

Google Scholar

[26] J.-H. Kerspe: Abstreckgleitziehen von nichtrostenden austenitischen Stählen; Dissertation, IFU, Universität Stuttgart, (1980)

DOI: 10.1007/978-3-642-52208-6

Google Scholar

[27] P. Schmid, M. Liewald: Determination of temperature dependent forming limit curves of metastable austenitic stainless steel considering martensite formation; ESS Conference, Como, (2011)

DOI: 10.1063/1.3623643

Google Scholar

[28] P. Schmid, M. Liewald.: New Developments in Sheet Metal Forming of Stainless Steel - Current Investigations and Future Challenges; in: Proceedings of the NAMRII/SME, 40, (2012)

Google Scholar

[29] B.B. Mikic (1966): Thermal Contact Resistance, Dissertation, Massachusetts Institute of Technology, (1966)

Google Scholar