Decreased Thermal Conductivity of CaMnO3 by Added-CNTs

Article Preview

Abstract:

The CaMnO3 compound is synthesized by solid state reaction method. The precursor powder of calcium carbonate (CaCO3) and manganese oxide (MnO2) are mixed by ball milling then calcined at 850°C for 10 h and sintering at 1,150 °C for 36 h to obtain the calcium manganese oxide (CaMnO3) compound. The compound was doped the carbon nanotubes (CNTs) 2%, 4%, 6%, 8% and 10% by molar ratio following the calcinations and sintering process. The morphology and crystallography of the samples are analyzed by the X-ray diffraction (XRD) technique and scanning electron microscope (SEM). The Seebeck coefficient (S), electrical resistivity (ρ), thermal conductivity (κ) and dimensionless figure of merit were anlyzed. It results shown in a good thermoelectric properties after doping CNTs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-330

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Kenfaui, D. Chateigner, M. Gomina, J.G. Noudem, J. Alloys Compd. 490 (2010)

Google Scholar

[2] F.P. Zhang, Q.M. Lu, J.X. Zhang, J. Alloys Compd. 484 (2009) 550.

Google Scholar

[3] G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B.B. Iversen, Nat. Mater. 3(2004) 458.

Google Scholar

[4] L. Bocher, M.H. Aguirre, R. Robert, D. Logvinovich, S. Bakardjieva, J. Hejtmanek, A. Weidenkaff, Acta Mater. 57 (2009) 5667.

Google Scholar

[5] K.R. Poeppelmeier, M.E. Leonowicz, J.C. Scanlon, J. Solid State Chem. 45 (1982) 71.

Google Scholar

[6] D. Sousa, M.R. Nunes, C. Silveira, I. Matos, A.B. Lopes, M.E.M. Jorge, Mater. Chem.Phys. 109 (2008) 311.

Google Scholar

[7] X.J. Fan, H. Koinuma, T. Hasegawa, Physica B 329–333 (2003) 723.

Google Scholar

[8] N. Kumar, H. Kishan, A. Rao, V.P.S. Awana, J. Alloys Compd. 502 (2010) 283.

Google Scholar

[9] Y. Wang, Y. Sui, P. Ren, L. Wang, X. Wang, W. Su, H. Fan, Inorg. Chem. 49 (2010) 3216.

Google Scholar

[10] J.W. Park, D.H. Kwak, S.H. Yoon, S.C. Choi, J. Alloys Compd. 487 (2009) 550.

Google Scholar

[11] R. Ang, Y.P. Sun, Y.Q. Ma, B.C. Zhao, X.B. Zhu, W.H. Song, J. Appl. Phys. 100 (2006) 063902.

Google Scholar

[12] M.E. Melo Jorge, M.R. Nunes, R. Silva Maria, D. Sousa, Chem. Mater. 17 (2005) 2069.

Google Scholar

[13] A. Reller, J.M. Thomas, D.A. Jefferson, M.K. Uppal, Proc. R. Soc. Lond.A394 (1984) 223.

Google Scholar

[14] E. Bakken, J. Boeiro-Goates, T. Grande, B. Hovde, T. Norby, L. Romark, Solid State Ionics 176 (2005) 2261.

DOI: 10.1016/j.ssi.2005.06.009

Google Scholar

[15] Q. Zhou, B.J. Kennedy, J. Phys. Chem. Solids 67 (2006) 1598.

Google Scholar

[16] L. Forrό, C. Schönenberger, see chapter in this volume 395, 414

Google Scholar

[17] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, D. Colbert, R. E. Smalley, Science 269, 1550 (1995) 395, 396

Google Scholar

[18] Kong, W. J.; Lu, L.; Zhu, H. W.; Wei, B. Q.; Wu, D. H. J. Phys.: Condens. Matter 2005, 17, (1923)

Google Scholar

[19] M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai, J. Solid State Chem. 120, 105 (1995).

Google Scholar