Preparation of Thin Cu Electrode on Al2O3 + Clay Substrate by Pulsed DC Magnetron Sputtering

Article Preview

Abstract:

Aluminum oxide (Al2O3) and Copper (Cu) are popular into insulator and electrode for thermoelectric module. The Al2O3 + clay substrate was prepared by solid state reaction and the thin Cu electrode prepared by pulsed DC magnetron sputtering. Crystal structure and microstructure of the substrate were measured by using the X-ray diffraction and scanning electron microscopy techniques. The Vicker hardness and density were measured by Micro Hardness tester and Archimedes method, respectively. The X-ray diffraction patterns of the substrate were obtained mix phases such as Al2O3, clay and Cu phases. The hardness and density were obtained mean value of 332.11 HV and 2.47 g/cm3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

335-338

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Chaudhry, R. Raza, S.A. Hayat. Renewable energy technologies in Pakistan: Prospects and challenges. Renew Sust Energ Rev. 13 (2009) 1657-1662.

DOI: 10.1016/j.rser.2008.09.025

Google Scholar

[2] A. Mohamed, Z. Zhengming, L. Yuan. A review of renewable energy technologies integrated with desalination systems. Renew Sust Energ Rev. 13 (2009) 2245-2262.

DOI: 10.1016/j.rser.2009.06.011

Google Scholar

[3] E. Koukharenko, N. Frety, V.G. Shepelevich, J.C. Tedenac. Thermoelectric properties of BiTe material obtained by the ultrarapid quenching process route. J. Alloy Compounds.299 (2000) 254-257.

DOI: 10.1016/s0925-8388(99)00688-x

Google Scholar

[4] S. Bensaid, M. Brignone. High efficiency Thermo-Electric power generator. Int J of Hydrogen Energ. 37 (2012) 1385-1398.

DOI: 10.1016/j.ijhydene.2011.09.125

Google Scholar

[5] P. Khamma, C. Thanachayanont, T. Seetawan. Synthesis on the Nanoparticle of LaCoO3Thermoelectric Materia. Procedia Engineering. 8 (2011) 146-148.

DOI: 10.1016/j.proeng.2011.03.026

Google Scholar

[6] J. Xiao, T. Yang, P. Li, P. Zhai, Q. Zhang. Thermal design and management for performance optimization of solar thermoelectric generator. Appl Energ. 93 (2012) 33-38.

DOI: 10.1016/j.apenergy.2011.06.006

Google Scholar

[7] X. Gou, H. Xiao, S. Yang. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Appl Energ. 87 (2010) 3131-3136.

DOI: 10.1016/j.apenergy.2010.02.013

Google Scholar

[8] J.L. Pérez–Aparicio, R. Palma, R.L. Taylor. Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int J Heat Mass Tran. 55 (2012) 1363-1374.

DOI: 10.1016/j.ijheatmasstransfer.2011.08.031

Google Scholar

[9] S. Lineykin, S. Ben-Yaakov. Modeling and Analysis of Thermoelectric Modules. IEEE T Ind Appl. 43 (2007) 505-512.

DOI: 10.1109/tia.2006.889813

Google Scholar

[10] Z. Zhang, S. Zhou, Z. Chen. Preparation and morphology of single crystal α-Al2O3 nano-particles by combustion chemical deposition. Procedia Engineering. 27 (2012) 1284-1291.

DOI: 10.1016/j.proeng.2011.12.583

Google Scholar

[11] T. Terai, T. Mitsuyama, T. Yoneoka. Fabrication and properties of ceramic coatings for CTR liquid blanket by sputtering method. Fusion Eng Des. 51 (2000) 207-212.

DOI: 10.1016/s0920-3796(00)00465-8

Google Scholar

[12] H. Hong, F. Renli, D. Wang, X. Song, M. Jing. A new method for preparation of direct bonding copper substrate on Al2O3. Mater Lett. 61 (2007) 4131-4133.

DOI: 10.1016/j.matlet.2007.01.036

Google Scholar