[1]
H. Fan, H.D. Wu, M.L. Zhou, Y. Zhang, T.L. Ding and B.S. Wang. Planting sweet sorghum in Yellow River Delta: the cultivation measure, yield and effect on soil microflora. Advanced Materials Research. 518-523: 81-87. (2012).
DOI: 10.4028/www.scientific.net/amr.518-523.81
Google Scholar
[2]
R. Munns. Genes and salt tolerance: bringing them together. New Phytol. 167: 645–663. (2005).
DOI: 10.1111/j.1469-8137.2005.01487.x
Google Scholar
[3]
A. Almodares and M.R. Hadi. Production of bioethanol from sweet sorghum: A review. African Journal of Agricultural Research. 4(9): 772-780. (2009).
Google Scholar
[4]
M. Kim and D.F. Day. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of industrial microbiology and biotechnology. 38: 803-807. (2011).
DOI: 10.1007/s10295-010-0812-8
Google Scholar
[5]
M.A. Botella, V. Martinez, J. Pardines, A. Cerdá. Salinity induced potassium deficiency in maize plants. Journal of Plant Physiology. 150: 200-205. (1997).
DOI: 10.1016/s0176-1617(97)80203-9
Google Scholar
[6]
H. Greenway, R. Munns. Mechanism of salt tolerance in nonhalophytes. Annual Review of Plant Physiology. 31: 140-190. (1980).
DOI: 10.1146/annurev.pp.31.060180.001053
Google Scholar
[7]
B.S. Wang, R. Ratajczak, J.H. Zhang. Activity, amount and subunit composition of vacuolar-type H+-ATPase and H+-PPase in wheat roots under severe NaCl stress. Journal of Plant Physiology. 157: 109-116. (2000).
DOI: 10.1016/s0176-1617(00)80143-1
Google Scholar
[8]
D. Golldack, F. Quigley, C.B. Michalowski, U.R. Kamasani, H.J. Bohnert. Salinity stress-tolerant and -sensitive rice (Oryza sativa L. ) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology. 51: 71-81. (2003).
DOI: 10.1023/a:1020763218045
Google Scholar
[9]
J.K. Zhu, J.P. Liu, L.M. Xiong. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell. 10: 1181-1191. (1998).
DOI: 10.1105/tpc.10.7.1181
Google Scholar
[10]
B.S. Wang, K.F. Zhao. Comparison of extractive methods of Na and K in wheat leaves. Plant Physiol Commun. 31(1): 50-52. (1995).
Google Scholar
[11]
S.M. Wang, T.X. Chen, J.L. Zhang. Regulation of 6-benzylam inopurine (BA) and abscisic acid (ABA) on selectivity for Na+ over K+ and the distribution of free praline in Echinochloa frumentacea. Acta Bot Borea Occident Sin. 24(4): 588-595. (2004).
Google Scholar
[12]
M.F. McKenna, G. Houle. Why are annual plants rarely spring ephemerals? New Phytologist. 148: 295-302. (2000).
DOI: 10.1046/j.1469-8137.2000.00756.x
Google Scholar
[13]
R. Davenport, R.A. James, A. Zakrisson-Plogander, M. Tester, R. Munns. Control of sodium transport in durum wheat. Plant Physiology. 137: 807–818. (2005).
DOI: 10.1104/pp.104.057307
Google Scholar
[14]
R.A. James, A.R. Rivelli, R. Munns, S.V. Caemmerer. Factors affecting CO2 assimilation, leaf injury and growth in salts stressed durum wheat. Functional Plant Biology. 29: 1393–1403. (2002).
DOI: 10.1071/fp02069
Google Scholar
[15]
M. Tester, R. Davenport. Na+ tolerance and Na+ transport in higher plants. Annalsof Botany. 93: 503-527. (2003).
DOI: 10.1093/aob/mcg058
Google Scholar
[16]
C.X. Huang, R.F. van Steveninck. Maintenance of low Cl- concentrations in mesophyll cells of leaf blades of barley seedlings exposed to salt stress. Plant Physiol. 90: 1440-1443. (1989).
DOI: 10.1104/pp.90.4.1440
Google Scholar
[17]
T.L. Ding, P. Duan, B.S. Wang. Na+/K+ selectivity of leaf sheath in wheat cultivars differing in salt tolerance. Journal of Plant Physiology and Molecular Biology. 32(1): 123-126. (2006).
Google Scholar