Computational Modeling of the Pulling Force in a Conventional Pultrusion Process

Article Preview

Abstract:

Pultrusion process is gaining increasing attention in several sectors, due to the high productivity and quality achievable. Recent researches highlighted the influence of the pulling force on the quality of pultruded products. In this paper a pulling force model, accounting for compacting, viscous, and frictional effects in a conventional pultrusion process has been implemented. The model is based on the combination of an impregnation, a thermochemical, and a frictional sub-models. Obtained outcomes evidenced, for the considered case,adominant role of the viscous drag.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-406

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.S. Song, J.R. Youn, T.G. Gutowski, Life cycle energy analysis of fiber-reinforced composites, Compos. Part A 40 (2009) 1257–1265.

DOI: 10.1016/j.compositesa.2009.05.020

Google Scholar

[2] M. Valliappan, J.A. Roux, J.G. Vaughan, E.S. Arafat, Die and postdietemperature and cure in Graphite/Epoxy composites, Compos. Part B 27 (1996) 1-9.

DOI: 10.1016/1359-8368(95)00001-1

Google Scholar

[3] P. Carlone, G.S. Palazzo, R. Pasquino, Pultrusion manufacturing process development by computational modelling and methods, Math. Comput. Model. 44 (2006) 701-709.

DOI: 10.1016/j.mcm.2006.02.006

Google Scholar

[4] P. Carlone, G.S. Palazzo, Pultrusion manufacturing process development: Cure optimization by hybrid computational methods, Comput. Math. Appl. 53 (2007) 1464–1471.

DOI: 10.1016/j.camwa.2006.02.031

Google Scholar

[5] I. Baran, C.C. Tutum, J.H. Hattel, Optimization of the thermosetting pultrusion process by using hybrid and mixed integer genetic algorithms, Appl. Compos. Mater. (2012), DOI: 10. 1007/s10443-012-9278-3.

DOI: 10.1007/s10443-012-9278-3

Google Scholar

[6] I. Baran, C.C. Tutum, J.H. Hattel, The effect of thermal contact resistance on the thermosetting pultrusion process, Compos. Part B 95 (2013) 995-1000.

DOI: 10.1016/j.compositesb.2012.09.049

Google Scholar

[7] K.S. Raper, J.A. Roux, T.A. McCarty, J.G. Vaughan, Investigation of the pressure behaviour in a pultrusion die for glass-fibre/epoxycomposites, Compos Part A 30 (1999) 1123–1132.

DOI: 10.1016/s1359-835x(98)00196-1

Google Scholar

[8] H.L. Price, S.G. Cupschalk, Pulling Force and Its Variation in Composite Materials Pultrusion, in: C. D. Han (Ed. ), Polymer Blends and Composites in Multiphase Systems, ACS Publications, 1984, pp.301-322.

DOI: 10.1021/ba-1984-0206.ch018

Google Scholar

[9] E. Lackey, J.G. Vaughan, An analysis of factors affecting pull force for the pultrusion of graphite/epoxy composites, J. Reinf. Plast. Comp. 13 (1994) 188-199.

DOI: 10.1177/073168449401300301

Google Scholar

[10] P. Carlone, G.S. Palazzo, Viscous pull force evaluation in the pultrusion process by a finite element thermo-chemical rheological model, Int J Mater Form. 1 (2008) 831–834.

DOI: 10.1007/s12289-008-0264-0

Google Scholar

[11] D. Srinivasagupta, S. Potaraju, J.L. Kardos, B. Joseph, Steady state and dynamic analysis of a bench-scale injectedpultrusion process, Compos. Part A 34 (2003) 835-846.

DOI: 10.1016/s1359-835x(03)00182-9

Google Scholar

[12] P. Carlone, G.S. Palazzo, Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates, Int. J. Mater. Form. 2 (2009) 137-140.

DOI: 10.1007/s12289-009-0450-8

Google Scholar

[13] P. Carlone, G.S. Palazzo, Flow monitoring and permeability measurements in LCM processes by the means of a dielectric sensor, Key Eng. Mat. 504-506 (2012) 289-294.

DOI: 10.4028/www.scientific.net/kem.504-506.289

Google Scholar

[14] P. Carlone, G.S. Palazzo, A micro-scale model for fiber tow characterization under nondeterministic assumption: longitudinal and transverse permeability, submitted to Key Eng. Mat. (2013).

DOI: 10.4028/www.scientific.net/kem.554-557.2348

Google Scholar

[15] S.C. Joshi, Y.C. Lam, Three-dimensional finite-element/nodal-control-volume simulationof the pultrusion process with temperature-dependent materialproperties including resin shrinkage, Composites Science and Technology 61 (2001) 1539–1547.

DOI: 10.1016/s0266-3538(01)00056-2

Google Scholar

[16] M.W. Nielsen, J.W. Schmidt, J.H. Hattel, T.L. Andersen, C.M. Markussen, In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate: experimental results and numerical modeling, Wind Energ. (2012).

DOI: 10.1002/we.1550

Google Scholar