First-Principles Investigation of N-Al Co-Doping Effect on ZnMgO Wide-Gap Semiconductor

Article Preview

Abstract:

We report first principles studies of p-type doping properties of ZnMgO wide-gap semiconductor alloy. The band gaps of ZnMgO and doped ZnMgO are found to be controllable, and hence one can tailor the band gap of ZnMgO or doped ZnMgO to design devices by controlling Mg composition. According to defect formation energies analysis, the solid solubility of acceptor in ZnMgO can be improved by co-doping technology. The acceptor level of N becomes shallower by Al-N co-doping in ZnMgO, hence the hole concentration is enhanced. Combining the results of defect formation energies and acceptor level of N, we can draw the conclusion that p-type doping can be easier realized by Al-N co-doping in ZnMgO than in ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

253-258

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Klingshirn: Phys. Stat. Sol. (b) Vol. 244(2007), p.3027.

Google Scholar

[2] S. B. Zhang, S. H. Wei and A. Zunger: Phys. Rev. B Vol. 63(2001), pp.75205-1.

Google Scholar

[3] A. F. Kohan, G. Ceder, D. Morgan and C. G. Van de Walle: Phys. Rev. B, Vol. 61( 2000), p.15019.

Google Scholar

[4] Z. H. Zhang, Z. Z. Ye, D. W. Ma, L. P. Zhu, T. Zhou, B. H. Zhao and Z. G. Fei: Matter. Lett. Vol. 59(2005), p.2732.

Google Scholar

[5] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki: Nat. Mater. Vol. 4(2005), p.42.

DOI: 10.1038/nmat1284

Google Scholar

[6] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He and S. B. Zhang: Appl. Phys. Lett. Vol88(2006), p.173506.

Google Scholar

[7] T. Gruber, C. Kirchner, R. Kling, F. Reuss and A. Waag: Appl. Phys. Lett. Vol. 84(2004), p.5359.

Google Scholar

[8] Y. M. Ye, Z. Z. Ye, L. L. Chen, B. H. Zhao and L. P. Zhu: Appl. Surf. Sci. Vol. 253(2006), p.2345.

Google Scholar

[9] X. H. Pan, Z. Z. Ye, Y. J. Zeng, X. Q. Gu, J. S. Li, L. P. Zhu, B. H. Zhao, Y. Che and X. Q. Pan: J. Phys. D: Appl. Phys. Vol. 40(2007), p.4241.

Google Scholar

[10] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne: J. Phys.: Condens. Matter Vol. 14(2002), p.2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[11] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett Vol. 77(1996), P. 3865.

Google Scholar

[12] P. L. Zhu, J. W. Zhang, Z. S. Wu and Z. J. Zhang: Cryst. Growth. Des Vol. 8(2008), P. 3148.

Google Scholar

[13] D. Yuan, H. F. Luo, D. H. Huang, F. H. Wang: Acta. Phys. Sin. Vol. 60(2011), P. 077101-1.

Google Scholar

[14] H. P. He, G. F. Zhu, Z. Z. Ye, L. P. Zhu, F. Z. Wang, B. H. Zhao and J. Y. Huang: J. Appl. Phys. Vol. 99 (2006), P. 023503.

Google Scholar

[15] H. B. Gray: Chemical Bonds: An Introduction to Atomic and Molecular Structure(Nuiv. Science Books, Mill Valley Calif 1994). p.87.

Google Scholar