[1]
Li, C. G., & Bo, H. Z. (2002). Aerospace Materials. Beijing: National Defence Industry Press.
Google Scholar
[2]
Mu, Z. T. (2002). The analyzing method for fatigue life of aircraft structures under corrosive environment. Engineering Science, 3, 68-72.
Google Scholar
[3]
Bay, G. H., Bucci, R. J., & Covin, E. L, et al. (1997). Effects of prior-corrosion on the S/N fatigue performance of aluminum alloys 2024-T3 and 2524-T3. Effects of Environment on the Initiation of Crack Growth, ASTM STP 1298. Philadelphia: ASTM.
DOI: 10.1520/stp19955s
Google Scholar
[4]
Gruenberg, K. M., Craig, B. A., & Hillberry, B. M., et al. (2004). Predicting fatigue life of pre-corroded 2024 aluminum. International Journal of Fatigue, 26(7), 629-640.
DOI: 10.1016/j.ijfatigue.2003.10.011
Google Scholar
[5]
He, X. F. & Liu, W. T. (2005). Structure durability analysis and research on crack propagation pattern under corrosion condition. Structure & Environment Engineering. 32(4)53-59.
Google Scholar
[6]
Wang, X. S., Yu, S. W. & Pi, L. S. (1998). Research on simple methods for predicting the fatigue lives of various carbon steels under a pressure load. Journal of Mechanical Strength. 20 (3), 161-166.
Google Scholar
[7]
Sankaran, K. K., Perez, R. & Jata, K. V. (2001) Effect of prior corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies. Material Science and Engineering. 297, 223-229.
DOI: 10.1016/s0921-5093(00)01216-8
Google Scholar
[8]
Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. New York: Freeman.
Google Scholar
[9]
Lv, S. L. & Zhang, Y. H. et al. (2010). Research and evaluation on corrosion damage of aluminum alloy structure. Beijing: Northwestern Polytechnical University Press.
Google Scholar
[10]
Liu, L. M. & Duan, M. L., et al. (2003). On the physical nature of the Paris law. ACTA MECHANICA SINICA. 35(2), 171-174.
Google Scholar