Monte Carlo Simulation of Adsorption Isotherms of Pure C5-C7 Linear Alkanes in Pillared Layered Materials

Article Preview

Abstract:

The adsorption equilibria of pure linear alkanes, involving n-pentane, n-hexane, and n-heptane in pillared layered materials are simulated using configurational-bias Monte Carlo (CBMC) techniques in grand canonical ensemble. In the CBMC simulation, pillared layered pores are modelled by a uniform distribution of pillars between two solid layered walls with a given size of interlayer gallery. And a grid model is employed here to calculate the interaction between fluid molecules and two layered boards. Our simulation results are in a good agreement with the reported experimental data on the adsorption of nitrogen at 77 K, indicating that the grid model used in this work is effective. Then, a series of CBMC simulations of the adsorption isotherms of pure n-pentane, n-hexane, and n-heptane in pillared layered pores with three different porosities ψ = 0.98, 0.94 and 0.87, and three pore widths H = 1.02, 1.70 and 2.38 nm at temperature T = 300 K has been carried out.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

566-571

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M.B. Ndjaka, G. Zwanenburg, B. Smit and M. Schenk: Microporous Mesoporous Mater. Vol. 68 (2004), p.37.

Google Scholar

[2] R. Krishna and J.M. Van Baten: Chem. Phys. Lett. Vol. 407 (2005), p.159.

Google Scholar

[3] T.J.H. Vlugt, W. Zhu, F. Kapteijn, J.A. Moulijin, B. Smit and R. Krishna: J. Am Chem. Soc. Vol. 120 (1998), p.5599.

Google Scholar

[4] L.H. Lu, Q. Wang and Y.C. Liu: J. Phys. Chem. B Vol. 109 (2005), p.8845.

Google Scholar

[5] Z.M. Du, G. Manos, T.J.H. Vlugt and B. Smit: AIChE J. Vol. 44 (1998), p.1756.

Google Scholar

[6] W.Z. Li, J. Lu, J.S. Chen, G.D. Li, Y.S. Jiang, L.S. Li and B.Q. Huang: J. Chem. Technol. Biot. Vol. 81 (2006), p.89.

Google Scholar

[7] W.Z. Li, C.G. Qin, C.S. Lv, L.S. Li and J.S. Chen: Catal. Lett. Vol. 94 (2004), p.95.

Google Scholar

[8] W.Z. Li, C.G. Qin, W.M. Xiao and J.S. Chen: J. Solid State Chem. Vol. 178 (2005), p.390.

Google Scholar

[9] A. Gil and L.M. Gandia: Catal. Rev. -Sci. Eng. Vol. 42 (2000), p.146.

Google Scholar

[10] M.S.A. Baksh, E.S. Kikkinides and R.T. Yang: Ind. Eng. Chem. Res. Vol. 31 (1992), p.2181.

Google Scholar

[11] X.H. Yi, J. Ghassemzadeh, K.S. Shing and M. Sahimi: J. Chem. Phys. Vol. 108 (1998), p.2178.

Google Scholar

[12] D.P. Cao and W.C. Wang: Phys. Chem. Chem. Phys. Vol. 4 (2002), p.3720.

Google Scholar

[13] W.Z. Li, Z. Y Liu, Y.L. Che and D. Zhang: J. Colloid Interface Sci. Vol. 312 (2007), p.179.

Google Scholar

[14] A.G. Bezus, A.V. Kiselev, A.A. Lopatkin and P.Q. Du: J. Chem. Soc. Vol. 74 (1978), p.367.

Google Scholar

[15] R.L. June, A.T. Bell and D.N. Theodorou: J. Phys. Chem. Vol. 94 (1990), p.1508.

Google Scholar

[16] W.L. Jorgensen, J.D. Madura and C.J. Swenson: J. Am. Chem. Soc. Vol. 106 (1984), p.6638.

Google Scholar

[17] M.P. Allen and D.J. Tidesley: Computer Simulation of Liquids (Oxford University Press, USA 1989).

Google Scholar

[18] X.H. Yi, K.S. Shing and M. Sahimi: Chem. Eng. Sci. Vol. 51 (1996), p.3409.

Google Scholar

[19] T.J.H. Vlugt, R. Krishna and B. Smit: J. Phys. Chem. B Vol. 103 (1999), p.1102.

Google Scholar

[20] S. Calero, B. Smit and R. Krishna: Phys. Chem. Chem. Phys. Vol. 3 (2001), p.4390.

Google Scholar