The Study of Structural Transformation Induced by Cu Concentration Variation in the Frozen (CoCu)309 Clusters

Article Preview

Abstract:

The irregular physical and chemical properties can induce by the synergy effects of alloy elements in bimetallic clusters. Research on the influence of alloys concentration on the frozen structure of bimetallic cluster plays a key role in exploring new structural materials. In this paper, the influence of the Cu concentration on the frozen structures of the (CoCu)309 clusters was investigated by using molecular dynamics simulation based on an embedded atom method. The (CoCu)309 clusters with different Cu concentration were frozen from 2000 K to 200 K. It was found that the Co309 cluster was formed by the Co bulk-like hcp structures and the Cu309 cluster was constructed by the form with a 5-fold symmetry axe. The icosahedron structural transformation is strongly related to doping Cu atoms. Furthermore, two methods of icosahedrons structural transformation were found during the freezing processes of the Co-Cu clusters with different Cu concentration. The irregular phenomenon of the structure transformation induced with the 30% and 40% Cu concentration. The synergy effects of the Co-Cu on the surface are the key reason for the irregular icosahedrons.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

589-594

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. H. Wang. Shanghai: Shanghai Science & Technology Press, (2003).

Google Scholar

[2] R. Ferrando, J. Jellinek, R. L. Johnston: Chem Rev, 108(3): 845-910 (2008).

Google Scholar

[3] Y. G. Chushak, L. S. Bartell: J Phys Chem B, 107(16): 3747-3751 (2003).

Google Scholar

[4] D. H. Kim, H. Y. Kim, J. H. Ryu, et al: Phys Chem, 11(25): 5079-5085 (2009).

Google Scholar

[5] M. C. Fromen, J. Morillo, M. J. Casanove, et al: Europhys Lett, 73(6): 885-891 (2006).

Google Scholar

[6] F. Dorfbauer, T. Schrefl, M. Kirschner, et al: J Appl Phys, 99(8): 08G706 (2006).

Google Scholar

[7] Q. Wang, G. J. Li, D. G. Li, et al: Chin Phys B, 18(5): 1843-1847 (2009).

Google Scholar

[8] G. J. Li, T. Liu, Q. Wang, et al: Phys Lett A, 372(45): 6764-6769 (2008).

Google Scholar

[9] H. Y. Kim, H. G. Kim, J. H. Ryu, et al: Phys Rev B, 75(21): 212105 (2007).

Google Scholar

[10] H. T. Van, M. Hou: Phys Rev B, 72(11): 115434 (2005).

Google Scholar

[11] I. Parsina, F. Baletto: J Phys Chem C, 114(3): 1504-1511 (2010).

Google Scholar

[12] F. Ding, K. Bolton, A. Rosen: J Vac Sci Technol A, 22(4): 1471-1476 (2004).

Google Scholar

[13] K. K. Nanda, S. N. Sahu, S. N. Behera: Phys Rev A, 66(1), 013208 (2002).

Google Scholar

[14] X. Y. Xiao: Chin Phys B, 19(11): 113604 (2010).

Google Scholar

[15] G. J. Li, T. Liu, Q. Wang, et al: Phys Lett A, 372(45): 6764 (2008).

Google Scholar

[16] X. Y. Xiao, Z. F. Cheng and J. H. Xia: Modern Physics Letter B, 26(8): 1250051 (2012).

Google Scholar

[17] G. J. Li, Q. Wang, T. Liu, et al: Chin Phys Lett, 26(3): 036104 (2009).

Google Scholar

[18] Blaisten-Barojas, E. Kinam. 6A, 71 (1984).

Google Scholar

[19] J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91: 4950 (1987).

Google Scholar