Thermo-Mechanical Modelling of Friction Stir Welding Process

Article Preview

Abstract:

Friction stir welding (FSW) is a solid-state welding process where no gross melting of the material being welded takes place. Numerical modelling of the FSW process can provide realistic prediction of the thermo-mechanical behaviour of the process. Latest literature relating to finite element analysis (FEA) of thermo-mechanical behaviour of FSW process is reviewed in this paper. The recent development in thermo-mechanical modelling of FSW process is described with particular reference to two major factors that influence the performance of FSW joints: material flow and temperature distribution. The main thermo-mechanical modelling used in FSW process are discussed and illustrated with brief case studies from the literature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

1155-1159

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. He: Mater Manuf Processes, Vol. 27(12), (2012), p.1354.

Google Scholar

[2] X. He: Int J Adv Manuf Technol, Vol. 58, (2012), p.643.

Google Scholar

[3] X. He: Int J Adhe Adhe, Vol. 31, (2011), p.248.

Google Scholar

[4] K. Kitamura, H. Fujii, Y. Iwata, Y.S. Sun, Y. Morisada: Mater Des, Vol. 46, (2013), p.348.

Google Scholar

[5] A. Steuwer, D.G. Hattingh, M.N. James, U. Singh, T. Buslaps: Sci Technol Weld Join, Vol. 7(7), (2012), p.525.

Google Scholar

[6] H.R. Zareie Rajani, A. Esmaeili, M. Mohammadi, M. Sharbati, M.K.B. Givi: J Mater Engng Perform, Vol. 21(1), (2012), p.2429.

Google Scholar

[7] P. Periyasamy, B. Mohan, V. Balasubramanian: J Mater Engng Perform, Vol. 21(11), (2012), p.2417.

Google Scholar

[8] J. Guo, P. Gougeon, X. Chen:  Mater Sci Engng A, Vol. 553, (2012), p.149.

Google Scholar

[9] M. Sharifitabar, H. Nami: Compos Part B: Engng, Vol. 42(7), (2011), p (2004).

Google Scholar

[10] Y. Bozkurt, H. Uzun, S. Salman: J Compos Mater, Vol. 45(21), (2011), p.2237.

Google Scholar

[11] R.S. Mishra, Z.Y. Ma: Mater Sci Eng R, Vol. 50(1-2), (2005), p.1.

Google Scholar

[12] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia: Progress Mater Sci, Vol. 53(6), (2008), p.980.

Google Scholar

[13] P.L. Threadgilll, A.J. Leonard, H.R. Shercliff, P.J. Withers: Int Mater Reviews, Vol. 54(2), (2009), p.49.

Google Scholar

[14] H.W. Zhang, Z. Zhang, J.T. Chen: Mater Sci Engng A, Vol. 403(1-2), (2005), p.340.

Google Scholar

[15] H.W. Zhang, Z. Zhang, J.T. Chen: Trans China Weld Institut, Vol. 26(9), (2005), (in Chinese), p.13.

Google Scholar

[16] G.X. Wang, L.L. Zhu, Z. Zhang: China Welding (English Edition), Vol. 16(3), (2007), p.63.

Google Scholar

[17] D. Santiago, S. Urquiza, G. Lombera, L. de Vedia: Soldagem e Inspecao, Vol. 14(3), (2009), (in Portuguese), p.248.

Google Scholar

[18] H.W. Zhang, Z. Zhang, J.T. Chen: J Mater Process Technol, Vol. 183(1), (2007), p.62.

Google Scholar

[19] Z. Zhang, J.T. Chen, H.W. Zhang: J Aeronautical Mater, Vol. 25(6), (2005), (in Chinese), p.33.

Google Scholar

[20] Z. Zhang, Y.L. Liu, J.T. Chen, H.W. Zhang: Trans China Weld Institut, Vol. 28(11), (2007), (in Chinese), p.17.

Google Scholar

[21] Z. Zhang, H.W. Zhang: Int J Adv Manuf Technol, Vol. 37(3-4), (2008), p.279.

Google Scholar

[22] Z. Zhang, Y.L. Liu: Chinese J Mech Engng, Vol. 45(4), (2009), (in Chinese), p.13.

Google Scholar

[23] Z. Zhang, J. T Chen, Z.W. Zhang, H.W. Zhang: J Mater Sci, Vol. 46(17), (2011), p.5815.

Google Scholar

[24] J.H. Cho, P.R. Dawson: J Engng Mater Technol, Trans ASME, Vol. 130(1), (2008), p.0110071.

Google Scholar

[25] J.H. Cho, D.E. Boyce, P.R. Dawson: Mater Sci Engng A, Vol. 398(1-2), (2005), p.146.

Google Scholar

[26] L. Fratini, G. Buffa, L.L. Monaco: Sci Technol Weld Join, Vol. 15(3), (2012), p.199.

Google Scholar

[27] Y. Shimoda, M. Tsubaki, T. Yasui, M. Fukumoto: Quarterly J Japan Weld Society, Vol. 29(3), (2011), p 114s.

Google Scholar

[28] Z. Zhang, H.W. Zhang: J Plast Engng, Vol. 13(3), (2006), (in Chinese) p.108.

Google Scholar

[29] H.W. Zhang, Z. Zhang, J.T. Chen: Acta Metall Sinica, Vol. 41(8), (2005), (in Chinese), p.853.

Google Scholar

[30] M.Z.H. Khandkar, J.A. Khan: J Mater Process Manuf Sci, Vol. 10(2), (2001), p.91.

Google Scholar

[31] P. Ulysse: Int J Mach Tool Manuf, Vol. 42(14), (2002), p.1549.

Google Scholar

[32] P.F. Yin, R. Zhang, J.T. Xiong, K. Zhao, J.L. Li: J Northwest Polytech Univer, Vol. 30(4), (2012), (in Chinese), p.622.

Google Scholar

[33] A. Larsen, M. Stolpe, J.H. Hattel: Engng Comput, Vol. 29(1), (2012), p.65.

Google Scholar

[34] H. Jamshidi Aval, S. Serajzadeh, A.H. Kokabi: Int J Adv Manuf Technol, Vol. 52(5-8), (2011), p.531.

Google Scholar

[35] P. Prasanna, B.S. Rao, G.K.M. Rao: Int J Adv Manuf Technol, Vol. 51(9-12), (2010), p.925.

Google Scholar

[36] Q.Y. Shi, X.B. Wang, X. Kang, Y.J. Sun: J Tsinghua Univer, Vol. 50(7), (2010), (in Chinese), p.980.

Google Scholar

[37] A Simar, C. Jonckheere, K. Deplus, T. Pardoen, B. De Meester: Sci Technol Weld Join, Vol. 15(3), (2010), p.254.

Google Scholar

[38] K.H. Muci-Küchler, S. Kalagara, W.J. Arbegast: J Manuf Sci Engng, Trans ASME, Vol. 132(1), (2010), p.0145031.

Google Scholar

[39] N.S. Ma, A. Kunugi, T. Hirashima, K. Okubo, M. Kamioka: Welding Int, Vol. 23(1), (2009), p.9.

Google Scholar

[40] W.F. Xu, J.H. Liu, H.Q. Zhu: Trans China Weld Institut, Vol. 31(2), (2010), (in Chinese), p.63.

Google Scholar

[41] G. Buffa, L. Fratini: Sci Technol Weld Join, Vol. 14(3), (2009), p.239.

Google Scholar

[42] N. Rajamanickam, V. Balusamy, G. Madhusudhanna Reddy, K. Natarajan: Mater Des, Vol. 30(7), (2009), p.2726.

Google Scholar