Lightweight Material: Aluminium High Silicon Alloys in the Automotive Industry

Article Preview

Abstract:

Al-high Si alloys are well known for their use as lightweight components in engineering applications, particularly within the automotive industries, due to their high wear resistance and low thermal expansion. It is desirable to increase the hot strength of these alloys by increasing the Si content. In this work, I have concentrated on the use of Al-high Si alloys for land vehicles. The automobile, engine components, the piston engine, four-stroke cycle and Al-high Si alloys in automotive applications will be discussed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

1271-1276

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. E. Duffy, Modern Automotive Technology. South Holland, Illinois,: The Goodheart Willcox Co., (1994).

Google Scholar

[2] H. Yamagata, The Science and Technology of Materials in Automotive Engines. Cambridge England: Woodhead Publishing Limited, (2005).

Google Scholar

[3] www. Howstuffworks. com.

Google Scholar

[4] E. Koya, Y. Hagiwara, S. Miura, T. Hayashi, T. Fujiwara, and M. Onoda, Development of Aluminium Powder Metallurgy Composites for Cylinder Liners, SAE, Detroit, Michigan 940847, Feb28-March3 (1994).

DOI: 10.4271/940847

Google Scholar

[5] Spray Formed Aluminum Alloy Finds Engine Role, (1994).

Google Scholar

[6] On the Way to Ultra-Light Piston, Aluminium-Dusseldorf Then Isern, vol. 82, pp.520-521, (2006).

Google Scholar

[7] L. Zhen and W. D. Efi, Precipitation Behaviour of Al Mg Si Alloys with High Silicon Content, Journal of Materials Science, vol. 32, pp.1865-1902, (1997).

Google Scholar

[8] E. J. Lavernia, J. D. Ayers, and T. S. Srivatsan, Rapid Solidification Processing with Specific Application to Aluminium Alloys, International Materials Reviews, vol. 37, pp.1-44, (1992).

DOI: 10.1179/imr.1992.37.1.1

Google Scholar

[9] S. M. Traldi, I. Costa, and J. L. Roosi, Corrosion of Spray Formed Al-Si-Cu Alloys in Ethanol Automobile Fuel, Key Engineering Materials, vol. 189-191, pp.352-357, (2001).

DOI: 10.4028/www.scientific.net/kem.189-191.352

Google Scholar

[10] W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. D. Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Materials Science and Engineering A, vol. 280, pp.37-49, (2000).

DOI: 10.1016/s0921-5093(99)00653-x

Google Scholar

[11] J. Lee, High Strength Aluminum Casting Alloy for H igh Temperature Applications, NASA, Alabama NASA/TM -1998-2009004, (1998).

Google Scholar

[12] W. H. Hunt, New Directions in Aluminum-Based P/M Materials for Automotive Applications, The International Journal of Powder Metallurgy, vol. 36, pp.51-60, (2000).

Google Scholar

[13] J. Zhou, J. Duszczyk, and B. Korevaar, Al-20Si-Fe Osprey Preform and its Development During Subsequent Processing, Journal of Materials Science, vol. 26, pp.5275-5291, (1991).

DOI: 10.1007/bf01143222

Google Scholar

[14] M. A. Moustafa, F. H. Samuel, and H. W. Doty, Effect of Solution Heat Treatment and Additives on the Microstructure of Al-Si (A413. 1) Automotive Alloys, Journal of Materials Science, vol. 38, pp.4507-4522, (2003).

DOI: 10.4028/www.scientific.net/msf.467-470.399

Google Scholar

[15] H. M. Skelly and C. F. Dixon, The Effect of Cr, Co, and Sr Additions on The Strength of an Al-35%Si Powder Alloy, Powder Metallurgy, vol. 4, pp.232-233, (1976).

DOI: 10.1179/pom.1976.19.4.232

Google Scholar

[16] H. O. Santos, I. Costa, and J. L. Rossi, Mechanical and Microstructural Characterisation of Cylinder Liners, Materials Science Forum, vol. 416-418, pp.407-412, (2003).

DOI: 10.4028/www.scientific.net/msf.416-418.407

Google Scholar

[17] M. E. Fine and E. A. Starke, Rapid Solidified Powder Aluminium Alloys, Philadelphia: ASTM, (1986).

Google Scholar