[1]
C. G. Bucher, U. Bourgund, A Fast and Efficient Response Surface Approach for Structural Reliability Problems, Structural Safety. 7(1990), 57-66.
DOI: 10.1016/0167-4730(90)90012-e
Google Scholar
[2]
I. Kaymaz, C. A. Mcmahon, A Response Surface Method Based on Weighted Regression for Structural Reliability Analysis, Probabilistic Engineering Mechanics. 20(2005), 11-17.
DOI: 10.1016/j.probengmech.2004.05.005
Google Scholar
[3]
D. L. Allaix, V. I. Carbone, An Improvement of the Response Surface Method, Structural Safety. 33(2011), 165-172.
DOI: 10.1016/j.strusafe.2011.02.001
Google Scholar
[4]
M. Paffrath, U. Wever, Adapted Polynomial Chaos Expansion for Failure Detection, Journal Of Computational Physics. 226(2007), 263-281.
DOI: 10.1016/j.jcp.2007.04.011
Google Scholar
[5]
G. Blatman, B. Sudret, Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression, Journal of Computational Physics. 230(2011), 2345-2367.
DOI: 10.1016/j.jcp.2010.12.021
Google Scholar
[6]
I. Kaymaz, Application of Kriging Method to Structural Reliability Problems, Structural Safety. 27(2005), 133-151.
DOI: 10.1016/j.strusafe.2004.09.001
Google Scholar
[7]
B. Hyeon Ju, B. Chai Lee, Reliability-Based Design Optimization Using a Moment Method and a Kriging Metamodel, Engineering Optimization. 40(2008), 421-438.
DOI: 10.1080/03052150701743795
Google Scholar
[8]
B. Echard, N. Gayton, M. Lemaire, Ak-Mcs: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation, Structural Safety. 33(2011), 145-154.
DOI: 10.1016/j.strusafe.2011.01.002
Google Scholar
[9]
J. E. Hurtado, D. A. Alvarez, Neural-Network-Based Reliability Analysis: A Comparative Study, Computer Methods in Applied Mechanics and Engineering. 191(2001), 113-132.
DOI: 10.1016/s0045-7825(01)00248-1
Google Scholar
[10]
J. Deng, D. Gu, X. Li, Q. Zhong, Structural Reliability Analysis for Implicit Performance Functions Using Artificial Neural Network, Structural Safety. 27(2005), 25-48.
DOI: 10.1016/j.strusafe.2004.03.004
Google Scholar
[11]
H. M. Gomes, A. M. Awruch, Comparison of Response Surface and Neural Network with Other Methods for Structural Reliability Analysis, Structural Safety. 26(2004), 49-67.
DOI: 10.1016/s0167-4730(03)00022-5
Google Scholar
[12]
C. M. Rocco, J. A. Moreno, Fast Monte Carlo Reliability Evaluation Using Support Vector Machine, Reliability Engineering and System Safety. 76(2002), 237-243.
DOI: 10.1016/s0951-8320(02)00015-7
Google Scholar
[13]
J. E. Hurtado, Filtered Importance Sampling with Support Vector Margin: A Powerful Method for Structural Reliability Analysis, Structural Safety. 29(2007), 2-15.
DOI: 10.1016/j.strusafe.2005.12.002
Google Scholar
[14]
A. Basudhar, S. Missoum, A. Harrison Sanchez, Limit State Function Identification Using Support Vector Machines for Discontinuous Responses and Disjoint Failure Domains, Probabilistic Engineering Mechanics. 23(2008), 1-11.
DOI: 10.1016/j.probengmech.2007.08.004
Google Scholar
[15]
A. Basudhar, S. Missoum, Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines, Computers and Structures. 86(2008), 1904-(1917).
DOI: 10.1016/j.compstruc.2008.02.008
Google Scholar
[16]
J. E. Hurtado, D. A. Alvarez, An Optimization Method for Learning Statistical Classifiers in Structural Reliability, Probabilistic Engineering Mechanics. 25(2010), 26-34.
DOI: 10.1016/j.probengmech.2009.05.006
Google Scholar
[17]
X. Tan, W. Bi, X. Hou, W. Wang, Reliability Analysis Using Radial Basis Function Networks and Support Vector Machines, Computers and Geotechnics. 38(2011), 178-186.
DOI: 10.1016/j.compgeo.2010.11.002
Google Scholar
[18]
H. Dai, H. Zhang, W. Wang, A Support Vector Density-Based Importance Sampling for Reliability Assessment, Reliability Engineering and System Safety. 106(2012), 86-93.
DOI: 10.1016/j.ress.2012.04.011
Google Scholar
[19]
J. M. Bourinet, F. Deheeger, M. Lemaire, Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines, Structural Safety. 33(2011), 343-353.
DOI: 10.1016/j.strusafe.2011.06.001
Google Scholar
[20]
J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines, World Scientific Publishing Co. Pre. Ltd, London, (2002).
DOI: 10.1142/5089
Google Scholar
[21]
V. N. Vapnik, The Nature of Statistical Learning Theroy, Springer-Verlag, New York, (1995).
Google Scholar
[22]
C. Cortes, V. N. Vapnik, Support Vector Network, Machine Learning. 20(1995), 273-297.
Google Scholar
[23]
K. De Brabanter, P. Karsmakers, F. Ojeda, C. Alzate, J. De Brabanter, et al. LS-SVMlab Toolbox User's Guide, (2011).
Google Scholar