Research Progress of Quantum Dot Intermediate Band Solar Cell

Article Preview

Abstract:

The quantum dot intermediate band solar cell is a theoretical concept with the potential for exceeding the conversion efficiency of conventional single-gap solar cells. This paper focuses on summarizing the present status of quantum dot intermediate band solar cell. From the introduction of the concept, it hasnt been realized. Some theoretical proposals and suitable material systems have been investigated to improve the actual conversion efficiency. It seems that there is still a long but bright way to go in this field.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

2013-2016

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Shockley and H. J. Queisser, Efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519.

Google Scholar

[2] Jin Young Kim, et al., Efficient tandem polymer solar cells fabricated by all-solution processing, Science 317 (2007) 222-225.

Google Scholar

[3] A. J. Nozik, Quantum dot solar cells, Physica E 14 (2002) 115-120.

Google Scholar

[4] A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Phys. Rev. Lett. 78 (26) (1997) 5014–5017.

DOI: 10.1103/physrevlett.78.5014

Google Scholar

[5] A. Luque, A. Marti, A metallic intermediate band high efficiency solar cell, Prog. Photovolt. : Res. Appl. 9 (2) (2001) 73–86.

DOI: 10.1002/pip.354

Google Scholar

[6] A. Luque, A. Marti, L. Cuadra, High efficiency solar cell with metallic intermediate band, 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, p.59 –62, (2000).

DOI: 10.1109/pvsc.2000.916039

Google Scholar

[7] D. Macdonald, K. Mclean, P. N. K. Deenapanray, S. De Wolf, J. Schnidt, Electronically-coupled up-conversion: an alternative approach to impurity photovoltanics in crystalline silicon, Semiconductor Science and Technology 23 (1) (2007) 15001.

DOI: 10.1088/0268-1242/23/1/015001

Google Scholar

[8] V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, S. Ermer, Thermophotovoltaic energy conversion for space, Journal of physical chemistry C 112 (21) (2008) 7841-7845.

DOI: 10.1021/jp711315c

Google Scholar

[9] A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. Cuadra, and A. Luque, Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell, Thin Solid Films 511 (2006) 638-644.

DOI: 10.1016/j.tsf.2005.12.122

Google Scholar

[10] S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, Quantum dot integration in heterostructure solar cells, Sol. Energy Mater. Sol. Cells 90 (2006) 2968-2974.

DOI: 10.1016/j.solmat.2006.06.011

Google Scholar

[11] L. Cuadra, A. Marti, A. Luque, Present status of intermediate band solar cell research, Thin Solid Films 451-452 (2004) 593-599.

DOI: 10.1016/j.tsf.2003.11.047

Google Scholar

[12] A.S. Brown, M.A. Green, R.P. Corkish, Limiting efficiency for a multi-band solar cell containing three and four bands, Physica E 14 (1–2) (2002) 121–125.

DOI: 10.1016/s1386-9477(02)00375-2

Google Scholar

[13] A. Marti, L. Cuadra, and A. Luque, Quantum dot intermediate band solar cell, Proc. 28th IEEE PVSC, Anchorage, pp.940-943, (2000).

DOI: 10.1109/pvsc.2000.916039

Google Scholar

[14] G. Wei, K. T. Shiu, N. C. Giebink, S. R. Forrest, Thermodynamic limits of quantum photovoltaic cell efficiency, J. Appl. Phys. 91 (2007) 223507 (1-3).

DOI: 10.1063/1.2817753

Google Scholar

[15] G. Wei, S. R. Forrest, Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier, Nano Letters 7 (1) (2007) 218-222.

DOI: 10.1021/nl062564s

Google Scholar

[16] N. Usami, A. Alguno, K. Fujiwara, T. Ujihara, G. Sazaki, K. Nakajima, Y. Shiraki, Fabrication of solar cells with stacked Ge islands for enhanced absorption in the infrared regime, Thin Solid Films 451 (2004) 604-607.

DOI: 10.1016/j.tsf.2003.11.027

Google Scholar

[17] R. P. Raffaelle, S. L. Castro, A. F. Hepp, S. G. Bailey, Quantum dot solar cells, Prog. Photovolt. 10 (6) (2002) 433–439.

DOI: 10.1002/pip.452

Google Scholar

[18] I. E. Maronchuk, S. Y. Erochin, T. F. Kulutkina, V. V. Kurak, A. I. Maronchuk, V. V. Tsybulenko, Solar cells heterostructures with InAs quantum dots obtianed by liquid phase epitaxy, 3rd World Conference on Photovoltaic Energy Conversion, Osaka(Japan), (2004).

DOI: 10.1088/0268-1242/19/6/015

Google Scholar

[19] A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, and J. L. Balenzategui, Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells, Appl. Phys. Lett. 87 (8) (2005).

DOI: 10.1063/1.2034090

Google Scholar

[20] A. Luque, A. Mart´ı, C. Stanley, N. L´opez, L. Cuadra, D. Zhou, J. L. Pearson, and A. McKee, General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence, J. Appl. Phys. 96 (1) (2004) 903–909.

DOI: 10.1063/1.1760836

Google Scholar

[21] A. Luque, A. Mart´ı, N. L´opez, E. Antolin, E. C´anovas, C. Stanley, C. Farmer, and P. Diaz, Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band, J. Appl. Phys. 9 (9) (2006).

DOI: 10.1063/1.2193063

Google Scholar

[22] A. Marti, E. Antolin, C. Stanley, C. Farmer, N. Lopez, P. P. Diaz, E. Canovas, P. Linares, and A. Luque, Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell, Phys. Rev. Lett. 97 (24) (2006).

DOI: 10.1103/physrevlett.97.247701

Google Scholar

[23] A. G. Norman, M. C. Hanna, P. Dippo, D. H. Levi, R. C. Reedy, J. S. Ward, and M. M. Al-Jassim, InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediateband solar cells, in Conf. Rec. 31st IEEE Photovoltaic Spec. Conf., Orlando FL, p.43–48, (2005).

DOI: 10.1109/pvsc.2005.1488065

Google Scholar

[24] Q. Shao, A. A. Balandin, A. I. Fedoseyev, M. Turowski, Intermediate-band solar cells based on quantum dot supracrystals, J. Appl. Phys. 91 (2007) 163503 (1-3).

DOI: 10.1063/1.2799172

Google Scholar

[25] M. Y. Levy, C. Honsberg, A. Marti, and A. Luque, Quantum dot intermediate band solar cell material systems with negligible valence band offsets, Proceedings of the 31st IEEE Photovoltaic Specialists Conferenc, New Jersey, p.90–93, (2005).

DOI: 10.1109/pvsc.2005.1488076

Google Scholar

[26] M. Y. Levy, C. Honsberg, Nanostructured absorbers for multiple transition solar cells, IEEE Transactions on Electron Devices, 55 (3) (2008) 706-711.

DOI: 10.1109/ted.2007.914829

Google Scholar