[1]
W. Shockley and H. J. Queisser, Efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519.
Google Scholar
[2]
Jin Young Kim, et al., Efficient tandem polymer solar cells fabricated by all-solution processing, Science 317 (2007) 222-225.
Google Scholar
[3]
A. J. Nozik, Quantum dot solar cells, Physica E 14 (2002) 115-120.
Google Scholar
[4]
A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Phys. Rev. Lett. 78 (26) (1997) 5014–5017.
DOI: 10.1103/physrevlett.78.5014
Google Scholar
[5]
A. Luque, A. Marti, A metallic intermediate band high efficiency solar cell, Prog. Photovolt. : Res. Appl. 9 (2) (2001) 73–86.
DOI: 10.1002/pip.354
Google Scholar
[6]
A. Luque, A. Marti, L. Cuadra, High efficiency solar cell with metallic intermediate band, 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, p.59 –62, (2000).
DOI: 10.1109/pvsc.2000.916039
Google Scholar
[7]
D. Macdonald, K. Mclean, P. N. K. Deenapanray, S. De Wolf, J. Schnidt, Electronically-coupled up-conversion: an alternative approach to impurity photovoltanics in crystalline silicon, Semiconductor Science and Technology 23 (1) (2007) 15001.
DOI: 10.1088/0268-1242/23/1/015001
Google Scholar
[8]
V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, S. Ermer, Thermophotovoltaic energy conversion for space, Journal of physical chemistry C 112 (21) (2008) 7841-7845.
DOI: 10.1021/jp711315c
Google Scholar
[9]
A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. Cuadra, and A. Luque, Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell, Thin Solid Films 511 (2006) 638-644.
DOI: 10.1016/j.tsf.2005.12.122
Google Scholar
[10]
S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, Quantum dot integration in heterostructure solar cells, Sol. Energy Mater. Sol. Cells 90 (2006) 2968-2974.
DOI: 10.1016/j.solmat.2006.06.011
Google Scholar
[11]
L. Cuadra, A. Marti, A. Luque, Present status of intermediate band solar cell research, Thin Solid Films 451-452 (2004) 593-599.
DOI: 10.1016/j.tsf.2003.11.047
Google Scholar
[12]
A.S. Brown, M.A. Green, R.P. Corkish, Limiting efficiency for a multi-band solar cell containing three and four bands, Physica E 14 (1–2) (2002) 121–125.
DOI: 10.1016/s1386-9477(02)00375-2
Google Scholar
[13]
A. Marti, L. Cuadra, and A. Luque, Quantum dot intermediate band solar cell, Proc. 28th IEEE PVSC, Anchorage, pp.940-943, (2000).
DOI: 10.1109/pvsc.2000.916039
Google Scholar
[14]
G. Wei, K. T. Shiu, N. C. Giebink, S. R. Forrest, Thermodynamic limits of quantum photovoltaic cell efficiency, J. Appl. Phys. 91 (2007) 223507 (1-3).
DOI: 10.1063/1.2817753
Google Scholar
[15]
G. Wei, S. R. Forrest, Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier, Nano Letters 7 (1) (2007) 218-222.
DOI: 10.1021/nl062564s
Google Scholar
[16]
N. Usami, A. Alguno, K. Fujiwara, T. Ujihara, G. Sazaki, K. Nakajima, Y. Shiraki, Fabrication of solar cells with stacked Ge islands for enhanced absorption in the infrared regime, Thin Solid Films 451 (2004) 604-607.
DOI: 10.1016/j.tsf.2003.11.027
Google Scholar
[17]
R. P. Raffaelle, S. L. Castro, A. F. Hepp, S. G. Bailey, Quantum dot solar cells, Prog. Photovolt. 10 (6) (2002) 433–439.
DOI: 10.1002/pip.452
Google Scholar
[18]
I. E. Maronchuk, S. Y. Erochin, T. F. Kulutkina, V. V. Kurak, A. I. Maronchuk, V. V. Tsybulenko, Solar cells heterostructures with InAs quantum dots obtianed by liquid phase epitaxy, 3rd World Conference on Photovoltaic Energy Conversion, Osaka(Japan), (2004).
DOI: 10.1088/0268-1242/19/6/015
Google Scholar
[19]
A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, and J. L. Balenzategui, Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells, Appl. Phys. Lett. 87 (8) (2005).
DOI: 10.1063/1.2034090
Google Scholar
[20]
A. Luque, A. Mart´ı, C. Stanley, N. L´opez, L. Cuadra, D. Zhou, J. L. Pearson, and A. McKee, General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence, J. Appl. Phys. 96 (1) (2004) 903–909.
DOI: 10.1063/1.1760836
Google Scholar
[21]
A. Luque, A. Mart´ı, N. L´opez, E. Antolin, E. C´anovas, C. Stanley, C. Farmer, and P. Diaz, Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band, J. Appl. Phys. 9 (9) (2006).
DOI: 10.1063/1.2193063
Google Scholar
[22]
A. Marti, E. Antolin, C. Stanley, C. Farmer, N. Lopez, P. P. Diaz, E. Canovas, P. Linares, and A. Luque, Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell, Phys. Rev. Lett. 97 (24) (2006).
DOI: 10.1103/physrevlett.97.247701
Google Scholar
[23]
A. G. Norman, M. C. Hanna, P. Dippo, D. H. Levi, R. C. Reedy, J. S. Ward, and M. M. Al-Jassim, InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediateband solar cells, in Conf. Rec. 31st IEEE Photovoltaic Spec. Conf., Orlando FL, p.43–48, (2005).
DOI: 10.1109/pvsc.2005.1488065
Google Scholar
[24]
Q. Shao, A. A. Balandin, A. I. Fedoseyev, M. Turowski, Intermediate-band solar cells based on quantum dot supracrystals, J. Appl. Phys. 91 (2007) 163503 (1-3).
DOI: 10.1063/1.2799172
Google Scholar
[25]
M. Y. Levy, C. Honsberg, A. Marti, and A. Luque, Quantum dot intermediate band solar cell material systems with negligible valence band offsets, Proceedings of the 31st IEEE Photovoltaic Specialists Conferenc, New Jersey, p.90–93, (2005).
DOI: 10.1109/pvsc.2005.1488076
Google Scholar
[26]
M. Y. Levy, C. Honsberg, Nanostructured absorbers for multiple transition solar cells, IEEE Transactions on Electron Devices, 55 (3) (2008) 706-711.
DOI: 10.1109/ted.2007.914829
Google Scholar