Synthesis of Macroporous FeS2 Nanotubes and their Electrochemical Properties

Article Preview

Abstract:

The particle size and morphology have a strong influence on the electrochemical performance of FeS2 electrodes. In this paper, a simple one-pot solvothermal method is reported for the synthesis of macroporous pyrite nanotubes for the first time. The phase composition, morphology and structure of the as-obtained products were studied by the energy dispersive spectroscopy (EDS), scanning electron microscopy, (high-resolution) transmission electron microscopy, X-ray diffraction. The electrochemical properties of the FeS2 samples were also investigated. The results demonstrated that the macroporous pyrite nanotubes delivered a higher initial discharge capacity of 925.2 mAh g-1 and had good capacity retention.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 774-776)

Pages:

677-681

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Caban-Acevedo, M. S. Faber, Y. Z. Tan, R. J. Hamers and S. Jin, Nano Lett., 12(2012) p.1977.

Google Scholar

[2] D. Zhang, X. L. Wang, Y. J. Mai, X. H. Xia, C. D. Gu, J. Appl. Electrochem., 42 (2012) p.263.

Google Scholar

[3] Y. Shao-Horn, S. Osmialowski, C. Horn Quinn, J. Electrochem. Soc. 149 (2002) pA1499.

Google Scholar

[4] G.L. Henriksen, D.R. Vissers, A.A. Chilenskas, J. Power Sources 54 (1995) p.134.

Google Scholar

[5] L. A. Montoro, J. M. Rosolen, J. H. Shin, and S. Passerini, Electrochim. Acta, 49(2004) p.3419.

Google Scholar

[6] J Xia, J. Jiao, B. Dai, W. Qiu, S. He, W. Qiu, P. Shen and L. Chen, RSC Adv., 3(2013) p.6132.

Google Scholar

[7] G. Markovich, C. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine and J. R. Heath, ACC. Chem. Res., 32(1999) p.415.

DOI: 10.1021/ar980039x

Google Scholar

[8] X. Y. Chen, Z. H. Wang, X. Wang, J. X. Wan, J. W. Liu and Y. T. Qian, Inorg. Chem., 44(2005), p.951.

Google Scholar

[9] C.A. Miguel, L. Dong, Kit S. Chew, John P. DeGrave, S. K. Nicholas, and J. Song, ACS nano, 7(2) (2013) p.1731.

Google Scholar

[10] M. Li, Q. Yao, G. Zhou, X. Qu, C. Mu and S. Fu, Cyrst. Eng. Comm., 13(2011) p.5936.

Google Scholar

[11] Y. Bai, J. Yeom, M. Yang, S. Cha, K. Sun, and N. A. Kotov , J. Phys. Chem. C, 117(2013), 2567.

Google Scholar

[12] D. Zhang, J. P. Tu, J. Y. Xiang, Y. Q. Qiao, X. H. Xia, , Electrochim. Acta, 56(2011), p.9980.

Google Scholar

[13] Y. Shao-Horn, Y.S. Osmialowski, Q.C. Horn, J. Electrochem. Soc., 149 (2002) pA1547.

Google Scholar

[14] J-W. Choi, G. Cheruvally, H-J. Ahn, K-W. Kim, J. Power Sources, 163(2006) p.158.

Google Scholar

[15] S. Huang , X. Liu , Q. Li , J. Chen, J Alloys and Compounds 472 (2009) pL9–L12.

Google Scholar